Skip to content

supervision-0.22.0

Compare
Choose a tag to compare
@LinasKo LinasKo released this 12 Jul 17:14
· 909 commits to develop since this release
93c1b94

πŸš€ Added

supervision cheatsheet

import numpy as np
import mediapipe as mp
import supervision as sv
from PIL import Image

model = mp.solutions.face_mesh.FaceMesh()

edge_annotator = sv.EdgeAnnotator(color=sv.Color.BLACK, thickness=2)

image = Image.open(<PATH_TO_IMAGE>).convert('RGB')
results = model.process(np.array(image))
key_points = sv.KeyPoints.from_mediapipe(results, resolution_wh=image.size)

annotated_image = edge_annotator.annotate(scene=image, key_points=key_points)
IMG_1777-result-refined-optimized.mp4
rich-label-annotator-2.mp4

🌱 Changed

import roboflow
from roboflow import Roboflow
import supervision as sv

roboflow.login()
rf = Roboflow()

project = rf.workspace(<WORKSPACE_ID>).project(<PROJECT_ID>)
dataset = project.version(<PROJECT_VERSION>).download("coco")

ds_train = sv.DetectionDataset.from_coco(
    images_directory_path=f"{dataset.location}/train",
    annotations_path=f"{dataset.location}/train/_annotations.coco.json",
)

path, image, annotation = ds_train[0]
    # loads image on demand

for path, image, annotation in ds_train:
    # loads image on demand

florence-2-result

πŸ› οΈ Fixed

πŸ§‘β€πŸ³ Cookbooks

This release, @onuralpszr added two new Cookbooks to our collection. Check them out to learn how to save Detections to a file and convert it back to Detections!

πŸ† Contributors

@onuralpszr (Onuralp SEZER), @David-rn (David RedΓ³), @jeslinpjames (Jeslin P James), @Bhavay-2001 (Bhavay Malhotra), @hardikdava (Hardik Dava), @kirilman, @dsaha21 (Dripto Saha), @cdragos (Dragos Catarahia), @mqasim41 (Muhammad Qasim), @SkalskiP (Piotr Skalski), @LinasKo (Linas Kondrackis)

Special thanks to @rolson24 (Raif Olson) for helping the community with ByteTrack!