Skip to content

supervision-0.21.0

Compare
Choose a tag to compare
@SkalskiP SkalskiP released this 06 Jun 06:43
· 1003 commits to main since this release
e50c761

πŸ“… Timeline

The supervision-0.21.0 release is around the corner. Here is the timeline:

  • 5 Jun 2024 08:00 PM CEST (UTC +2) / 5 Jun 2024 11:00 AM PDT (UTC -7) - merge develop into main - closing list supervision-0.21.0 features
  • 6 Jun 2024 11:00 AM CEST (UTC +2) / 6 Jun 2024 02:00 AM PDT (UTC -7) - release supervision-0.21.0

πŸͺ΅ Changelog

πŸš€ Added

non-max-merging

import supervision as sv

paligemma_result = "<loc0256><loc0256><loc0768><loc0768> cat"
detections = sv.Detections.from_lmm(
    sv.LMM.PALIGEMMA,
    paligemma_result,
    resolution_wh=(1000, 1000),
    classes=['cat', 'dog']
)
detections.xyxy
# array([[250., 250., 750., 750.]])

detections.class_id
# array([0])
import supervision as sv

image = ...
key_points = sv.KeyPoints(...)

LABELS = [
    "nose", "left eye", "right eye", "left ear",
    "right ear", "left shoulder", "right shoulder", "left elbow",
    "right elbow", "left wrist", "right wrist", "left hip",
    "right hip", "left knee", "right knee", "left ankle",
    "right ankle"
]

COLORS = [
    "#FF6347", "#FF6347", "#FF6347", "#FF6347",
    "#FF6347", "#FF1493", "#00FF00", "#FF1493",
    "#00FF00", "#FF1493", "#00FF00", "#FFD700",
    "#00BFFF", "#FFD700", "#00BFFF", "#FFD700",
    "#00BFFF"
]
COLORS = [sv.Color.from_hex(color_hex=c) for c in COLORS]

vertex_label_annotator = sv.VertexLabelAnnotator(
    color=COLORS,
    text_color=sv.Color.BLACK,
    border_radius=5
)
annotated_frame = vertex_label_annotator.annotate(
    scene=image.copy(),
    key_points=key_points,
    labels=labels
)

vertex-label-annotator-custom-example (1)

mask-to-rle (1)

🌱 Changed

import cv2
import numpy as np
import supervision as sv
from inference import get_model

model = get_model(model_id="yolov8x-seg-640")
image = cv2.imread(<SOURCE_IMAGE_PATH>)

def callback(image_slice: np.ndarray) -> sv.Detections:
    results = model.infer(image_slice)[0]
    return sv.Detections.from_inference(results)

slicer = sv.InferenceSlicer(callback = callback)
detections = slicer(image)

mask_annotator = sv.MaskAnnotator()
label_annotator = sv.LabelAnnotator()

annotated_image = mask_annotator.annotate(
    scene=image, detections=detections)
annotated_image = label_annotator.annotate(
    scene=annotated_image, detections=detections)

inference-slicer-segmentation-example

output

πŸ† Contributors

@onuralpszr (Onuralp SEZER), @LinasKo (Linas Kondrackis), @rolson24 (Raif Olson), @mario-dg (Mario da Graca), @xaristeidou (Christoforos Aristeidou), @ManzarIMalik (Manzar Iqbal Malik), @tc360950 (Tomasz CΔ…kaΕ‚a), @emsko, @SkalskiP (Piotr Skalski)