Skip to content
/ dkms Public
forked from dell/dkms

Dynamic Kernel Module Support

License

Notifications You must be signed in to change notification settings

rebel-so/dkms

 
 

Repository files navigation

Dynamic Kernel Module System (DKMS)

This intention of this README is to explain how DKMS can be used in conjunction with tarballs which contain a dkms.conf file within them.

The DKMS project (and any updates) can be found at: https://github.com/dell/dkms

Installation

Installation is performed from the source directory with one of the following commands:

make install
make install-debian
make install-redhat

Distribution specific installations (RPM, DEB, etc.) are not contained in this source repository.

Installation via DKMS Tarballs

DKMS can install directly from the following:

  1. Generic module source tarballs which contain a dkms.conf file
  2. Specially created DKMS tarballs with module source, pre-built module binaries and a dkms.conf file
  3. Specially created DKMS tarballs with pre-built module binaries and a dkms.conf file
  4. Manual placement of module source and dkms.conf file into /usr/src/<module>-<moduleversion>/ directory

In order to load any tarball into the DKMS tree, you must use the following command:

# dkms ldtarball /path/to/dkms_enabled.tar.gz

This command will first inspect the tarball to ensure that it contains a dkms.conf configuration file for that module. If it cannot find this file anywhere within the archive, then the ldtarball will fail.

From here, it will place the source in the tarball into /usr/src/<module>-<moduleversion>/. If source already exists in the directory, it will not overwrite it unless the --force option is specified. If the tarball is of type "c" above and does not contain source, it will only continue to load the tarball if existing module source is found in /usr/src/<module>-<moduleversion>/ or if the --force option is specified.

Continuing on, if the tarball is of type "b" or "c" it will then load any pre-built binaries found within the tarball into the dkms tree, but will stop short of installing them. Thus, all pre-built binaries will then be of in the built state when checked from the dkms status command. You can then use the dkms install command to install any of these binaries.

To create a tarball of type "1" above, you need only to take module source and a dkms.conf file for that module and create a tarball from them. Tarballs of type 2 or type 3 are created with the dkms mktarball command. To create a type 3 tarball, you must specify the flag --binaries-only with the mktarball.

Installation on Systems with no Module Source and/or Compiler

If you choose not to load module source on your system or if you choose not to load a compiler such as gcc onto your system, DKMS can still be used to install modules. It does this through use of DKMS binary only tarballs as explained in this README under tarballs of type c.

If your system does not have module source, loading the dkms tarball will fail because of this. To avoid this, use the --force flag, as such:

# dkms ldtarball /path/to/dkms_enabled.tar.gz --force

This will load the pre-built binaries into the dkms tree, and create the directory /usr/src/<module>-<moduleversion>/ which will only contain the module's dkms.conf configuration file. Once the tarball is loaded, you can then use dkms install to install any of the pre-built modules.

Of course, since module source will not be located in your dkms tree, you will not be able to build any modules with DKMS for this package.

Module signing

By default, DKMS generates a self signed certificate for signing modules at build time and signs every module that it builds before it gets compressed in the configured kernel compression mechanism of choice.

This requires the openssl command to be present on the system.

Private key and certificate are auto generated the first time DKMS is run and placed in /var/lib/dkms. These certificate files can be pre-populated with your own certificates of choice.

The location as well can be changed by setting the appropriate variables in /etc/dkms/framework.conf. For example, to allow usage of the system default Ubuntu update-secureboot-policy set the configuration file as follows:

mok_signing_key="/var/lib/shim-signed/mok/MOK.priv"
mok_certificate="/var/lib/shim-signed/mok/MOK.der"

NOTE: If any of the files specified by mok_signing_key and mok_certificate are non-existant, dkms will re-create both files.

The paths specified in mok_signing_key, mok_certificate and sign_file can use the variable ${kernelver} to represent the target kernel version.

sign_file="/lib/modules/${kernelver}/build/scripts/sign-file"

The variable mok_signing_key can also be a pkcs11:... string for a PKCS#11 engine, as long as the sign_file program supports it.

Secure Boot

On an UEFI system with Secure Boot enabled, modules require signing (as described in the above paragraph) before they can be loaded and the firmware of the system must know the correct public certificate to verify the module signature.

For importing the MOK certificate make sure mokutil is installed.

To check if Secure Boot is enabled:

# mokutil --sb-state
SecureBoot enabled

With the appropriate key material on the system, enroll the public key:

# mokutil --import /var/lib/dkms/mok.pub

You'll be prompted to create a password. Enter it twice, it can also be blank.

Reboot the computer. At boot you'll see the MOK Manager EFI interface:

SHIM UEFI key management

Press any key to enter it, then select "Enroll MOK":

Perform MOK management

Then select "Continue":

Enroll MOK

And confirm with "Yes" when prompted:

Enroll the key(s)?

After this, enter the password you set up with mokutil --import in the previous step:

Enroll the key(s)?

At this point you are done, select "OK" and the computer will reboot trusting the key for your modules:

Perform MOK management

After reboot, you can inspect the MOK certificates with the following command:

# mokutil --list-enrolled | grep DKMS
        Subject: CN=DKMS module signing key

To check the signature on a built DKMS module that is installed on a system:

# modinfo dkms_test | grep ^signer
signer:         DKMS module signing key

The module can now be loaded without issues.

Further Documentation

Once DKMS is installed, you can reference its man page for further information on different DKMS options and also to understand the formatting of a module's dkms.conf configuration file.

The DKMS project is located at: https://github.com/dell/dkms

About

Dynamic Kernel Module Support

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Shell 80.3%
  • Roff 13.7%
  • Makefile 2.3%
  • C 1.9%
  • Python 1.8%