Skip to content

arangoml/dgl-adapter

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

80 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ArangoDB-DGL Adapter

build CodeQL Coverage Status Last commit

PyPI version badge Python versions badge

License Code style: black Downloads

The ArangoDB-DGL Adapter exports Graphs from ArangoDB, the multi-model database for graph & beyond, into Deep Graph Library (DGL), a python package for graph neural networks, and vice-versa.

Note: The ArangoDB-DGL Adapter currently only supports the use of PyTorch as the DGL backend. Support for MXNet and Tensorflow will be added in the future.

About DGL

The Deep Graph Library (DGL) is an easy-to-use, high performance and scalable Python package for deep learning on graphs. DGL is framework agnostic, meaning if a deep graph model is a component of an end-to-end application, the rest of the logics can be implemented in any major frameworks, such as PyTorch, Apache MXNet or TensorFlow.

Installation

Latest Release

pip install adbdgl-adapter

Current State

pip install git+https://github.com/arangoml/dgl-adapter.git

Quickstart

Open In Collab

Also available as an ArangoDB Lunch & Learn session: Graph & Beyond Course #2.8

import dgl
import torch
import pandas

from arango import ArangoClient
from adbdgl_adapter import ADBDGL_Adapter, ADBDGL_Controller
from adbdgl_adapter.encoders import IdentityEncoder, CategoricalEncoder

# Connect to ArangoDB
db = ArangoClient().db()

# Instantiate the adapter
adbdgl_adapter = ADBDGL_Adapter(db)

# Create a DGL Heterogeneous Graph
fake_hetero = dgl.heterograph({
    ("user", "follows", "user"): (torch.tensor([0, 1]), torch.tensor([1, 2])),
    ("user", "follows", "topic"): (torch.tensor([1, 1]), torch.tensor([1, 2])),
    ("user", "plays", "game"): (torch.tensor([0, 3]), torch.tensor([3, 4])),
})
fake_hetero.nodes["user"].data["features"] = torch.tensor([21, 44, 16, 25])
fake_hetero.nodes["user"].data["label"] = torch.tensor([1, 2, 0, 1])
fake_hetero.nodes["game"].data["features"] = torch.tensor([[0, 0], [0, 1], [1, 0], [1, 1], [1, 1]])
fake_hetero.edges[("user", "plays", "game")].data["features"] = torch.tensor([[6, 1], [1000, 0]])

DGL to ArangoDB

############################
# 1.1: without a Metagraph #
############################

adb_g = adbdgl_adapter.dgl_to_arangodb("FakeHetero", fake_hetero)

#########################
# 1.2: with a Metagraph #
#########################

# Specifying a Metagraph provides customized adapter behaviour
metagraph = {
    "nodeTypes": {
        "user": {
            "features": "user_age",  # 1) you can specify a string value for attribute renaming
            "label": label_tensor_to_2_column_dataframe,  # 2) you can specify a function for user-defined handling, as long as the function returns a Pandas DataFrame
        },
        # 3) You can specify set of strings if you want to preserve the same DGL attribute names for the node/edge type
        "game": {"features"} # this is equivalent to {"features": "features"}
    },
    "edgeTypes": {
        ("user", "plays", "game"): {
            # 4) you can specify a list of strings for tensor dissasembly (if you know the number of node/edge features in advance)
            "features": ["hours_played", "is_satisfied_with_game"]
        },
    },
}

def label_tensor_to_2_column_dataframe(dgl_tensor: torch.Tensor, adb_df: pandas.DataFrame) -> pandas.DataFrame:
    """A user-defined function to create two
    ArangoDB attributes out of the 'user' label tensor

    :param dgl_tensor: The DGL Tensor containing the data
    :type dgl_tensor: torch.Tensor
    :param adb_df: The ArangoDB DataFrame to populate, whose
        size is preset to the length of **dgl_tensor**.
    :type adb_df: pandas.DataFrame
    :return: The populated ArangoDB DataFrame
    :rtype: pandas.DataFrame
    """
    label_map = {0: "Class A", 1: "Class B", 2: "Class C"}

    adb_df["label_num"] = dgl_tensor.tolist()
    adb_df["label_str"] = adb_df["label_num"].map(label_map)

    return adb_df


adb_g = adbdgl_adapter.dgl_to_arangodb("FakeHetero", fake_hetero, metagraph, explicit_metagraph=False)

#######################################################
# 1.3: with a Metagraph and `explicit_metagraph=True` #
#######################################################

# With `explicit_metagraph=True`, the node & edge types omitted from the metagraph will NOT be converted to ArangoDB.
adb_g = adbdgl_adapter.dgl_to_arangodb("FakeHetero", fake_hetero, metagraph, explicit_metagraph=True)

########################################
# 1.4: with a custom ADBDGL Controller #
########################################

class Custom_ADBDGL_Controller(ADBDGL_Controller):
    def _prepare_dgl_node(self, dgl_node: dict, node_type: str) -> dict:
        """Optionally modify a DGL node object before it gets inserted into its designated ArangoDB collection.

        :param dgl_node: The DGL node object to (optionally) modify.
        :param node_type: The DGL Node Type of the node.
        :return: The DGL Node object
        """
        dgl_node["foo"] = "bar"
        return dgl_node

    def _prepare_dgl_edge(self, dgl_edge: dict, edge_type: tuple) -> dict:
        """Optionally modify a DGL edge object before it gets inserted into its designated ArangoDB collection.

        :param dgl_edge: The DGL edge object to (optionally) modify.
        :param edge_type: The Edge Type of the DGL edge. Formatted
            as (from_collection, edge_collection, to_collection)
        :return: The DGL Edge object
        """
        dgl_edge["bar"] = "foo"
        return dgl_edge


adb_g = ADBDGL_Adapter(db, Custom_ADBDGL_Controller()).dgl_to_arangodb("FakeHetero", fake_hetero)

ArangoDB to DGL

# Start from scratch!
db.delete_graph("FakeHetero", drop_collections=True, ignore_missing=True)
adbdgl_adapter.dgl_to_arangodb("FakeHetero", fake_hetero)

#######################
# 2.1: via Graph name #
#######################

# Due to risk of ambiguity, this method does not transfer attributes
dgl_g = adbdgl_adapter.arangodb_graph_to_dgl("FakeHetero")

#############################
# 2.2: via Collection names #
#############################

# Due to risk of ambiguity, this method does not transfer attributes
dgl_g = adbdgl_adapter.arangodb_collections_to_dgl("FakeHetero", v_cols={"user", "game"}, e_cols={"plays"})

######################
# 2.3: via Metagraph #
######################

# Transfers attributes "as is", meaning they are already formatted to DGL data standards.
# Learn more about the DGL Data Standards here: https://docs.dgl.ai/guide/graph.html#guide-graph
metagraph_v1 = {
    "vertexCollections": {
        # Move the "features" & "label" ArangoDB attributes to DGL as "features" & "label" Tensors
        "user": {"features", "label"}, # equivalent to {"features": "features", "label": "label"}
        "game": {"dgl_game_features": "features"},
        "topic": {},
    },
    "edgeCollections": {
        "plays": {"dgl_plays_features": "features"}, 
        "follows": {}
    },
}

dgl_g = adbdgl_adapter.arangodb_to_dgl("FakeHetero", metagraph_v1)

#################################################
# 2.4: via Metagraph with user-defined encoders #
#################################################

# Transforms attributes via user-defined encoders
metagraph_v2 = {
    "vertexCollections": {
        "Movies": {
            "features": {  # Build a feature matrix from the "Action" & "Drama" document attributes
                "Action": IdentityEncoder(dtype=torch.long),
                "Drama": IdentityEncoder(dtype=torch.long),
            },
            "label": "Comedy",
        },
        "Users": {
            "features": {
                "Gender": CategoricalEncoder(), # CategoricalEncoder(mapping={"M": 0, "F": 1}),
                "Age": IdentityEncoder(dtype=torch.long),
            }
        },
    },
    "edgeCollections": {"Ratings": {"weight": "Rating"}},
}

dgl_g = adbdgl_adapter.arangodb_to_dgl("imdb", metagraph_v2)

##################################################
# 2.5: via Metagraph with user-defined functions #
##################################################

# Transforms attributes via user-defined functions
metagraph_v3 = {
    "vertexCollections": {
        "user": {
            "features": udf_user_features,  # supports named functions
            "label": lambda df: torch.tensor(df["label"].to_list()),  # also supports lambda functions
        },
        "game": {"features": udf_game_features},
    },
    "edgeCollections": {
        "plays": {"features": (lambda df: torch.tensor(df["features"].to_list()))},
    },
}

def udf_user_features(user_df: pandas.DataFrame) -> torch.Tensor:
   # user_df["features"] = ...
    return torch.tensor(user_df["features"].to_list())


def udf_game_features(game_df: pandas.DataFrame) -> torch.Tensor:
    # game_df["features"] = ...
    return torch.tensor(game_df["features"].to_list())


dgl_g = adbdgl_adapter.arangodb_to_dgl("FakeHetero", metagraph_v3)

Development & Testing

Prerequisite: arangorestore

  1. git clone https://github.com/arangoml/dgl-adapter.git
  2. cd dgl-adapter
  3. (create virtual environment of choice)
  4. pip install -e .[dev]
  5. (create an ArangoDB instance with method of choice)
  6. pytest --url <> --dbName <> --username <> --password <>

Note: A pytest parameter can be omitted if the endpoint is using its default value:

def pytest_addoption(parser):
    parser.addoption("--url", action="store", default="http://localhost:8529")
    parser.addoption("--dbName", action="store", default="_system")
    parser.addoption("--username", action="store", default="root")
    parser.addoption("--password", action="store", default="")

About

The Deep Graph Library adapter for ArangoDB

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages