Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
VrushabhMistry authored Jul 15, 2021
0 parents commit 8ac85af
Show file tree
Hide file tree
Showing 9 changed files with 989 additions and 0 deletions.
Binary file added 26StoreyTruss.xls
Binary file not shown.
125 changes: 125 additions & 0 deletions GWO.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
% Grey Wold Optimizer (GWO) source codes version 1.1 %
% %
% Developed in MATLAB R2011b(7.13) %
% %
% Author and programmer: Seyedali Mirjalili %
% %
% e-Mail: [email protected] %
% [email protected] %
% %
% Homepage: http://www.alimirjalili.com/GWO.html %
% %
% Main paper: S. Mirjalili, S. M. Mirjalili, A. Lewis %
% Grey Wolf Optimizer, Advances in Engineering %
% Software, Volume 69, March 2014, Pages 46-61, %
% http://dx.doi.org/10.1016/j.advengsoft.2013.12.007 %
% %

% Grey Wolf Optimizer
function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj,handles,Value)

% initialize alpha, beta, and delta_pos
Alpha_pos=zeros(1,dim);
Alpha_score=inf; %change this to -inf for maximization problems

Beta_pos=zeros(1,dim);
Beta_score=inf; %change this to -inf for maximization problems

Delta_pos=zeros(1,dim);
Delta_score=inf; %change this to -inf for maximization problems

%Initialize the positions of search agents
Positions=initialization(SearchAgents_no,dim,ub,lb);

%Convergence_curve=zeros(1,Max_iter);

l=0;% Loop counter

% Main loop
while l<Max_iter
for i=1:size(Positions,1)

% Calculate objective function for each search agent
fitness=fobj(Positions(i,:));
All_fitness(1,i)=fitness;

% Update Alpha, Beta, and Delta
if fitness<Alpha_score
Alpha_score=fitness; % Update alpha
Alpha_pos=Positions(i,:);
end

if fitness>Alpha_score && fitness<Beta_score
Beta_score=fitness; % Update beta
Beta_pos=Positions(i,:);
end

if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score
Delta_score=fitness; % Update delta
Delta_pos=Positions(i,:);
end
end


a=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0

% Update the Position of search agents including omegas
for i=1:size(Positions,1)
for j=1:size(Positions,2)

r1=rand(); % r1 is a random number in [0,1]
r2=rand(); % r2 is a random number in [0,1]

A1=2*a*r1-a; % Equation (3.3)
C1=2*r2; % Equation (3.4)

D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1
X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1

r1=rand();
r2=rand();

A2=2*a*r1-a; % Equation (3.3)
C2=2*r2; % Equation (3.4)

D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2
X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2

r1=rand();
r2=rand();

A3=2*a*r1-a; % Equation (3.3)
C3=2*r2; % Equation (3.4)

D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3
X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3

Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)

end

% Return back the search agents that go beyond the boundaries of the search space
Flag4ub=Positions(i,:)>ub;
Flag4lb=Positions(i,:)<lb;
Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
end
l=l+1;
Convergence_curve(l)=Alpha_score;
if l>1
line([l-1 l], [Convergence_curve(l-1) Convergence_curve(l)],'Color','b')
xlabel('Iteration');
ylabel('Best score obtained so far');
drawnow
end


set(handles.itertext,'String', ['The current iteration is ', num2str(l)])
set(handles.optimumtext,'String', ['The current optimal value is ', num2str(Alpha_score)])
if Value==1
hold on
scatter(l*ones(1,SearchAgents_no),All_fitness,'.','k')
end
end



Binary file added GWO_toolbox.fig
Binary file not shown.
Loading

0 comments on commit 8ac85af

Please sign in to comment.