Skip to content

Latest commit

 

History

History
33 lines (26 loc) · 571 Bytes

README.md

File metadata and controls

33 lines (26 loc) · 571 Bytes

Feedforward_NN_library

A simple library for feed-forward neural network as an exercise for the Coursera Deep Learning course.

Usage example can be found in the example1.py and example2.py

Currently supports:

  • Layers

    • Fully Connected
    • Dropout
    • Softmax
  • Activations

    • Sigmoid
    • Tanh
    • Relu
    • Leaky Relu
    • Linear
  • Loss Functions

    • Cross Entropy
    • Binary Entropy
    • MSE
    • Softmax + Cross Entropy
  • Optimizer

    • Gradient Descent Optimizer
    • Adam Optimizer
  • Other

    • L2 Regularization

Future Work:

  • Add Convolutional Layer