forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
diffn.cc
507 lines (441 loc) · 17.5 KB
/
diffn.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/sat/diffn.h"
#include <algorithm>
#include "absl/container/flat_hash_map.h"
#include "absl/strings/str_join.h"
#include "ortools/base/iterator_adaptors.h"
#include "ortools/base/map_util.h"
#include "ortools/base/stl_util.h"
#include "ortools/sat/cumulative.h"
#include "ortools/sat/disjunctive.h"
#include "ortools/sat/intervals.h"
#include "ortools/sat/sat_solver.h"
#include "ortools/sat/theta_tree.h"
#include "ortools/util/sort.h"
namespace operations_research {
namespace sat {
void AddCumulativeRelaxation(const std::vector<IntervalVariable>& x_intervals,
SchedulingConstraintHelper* x,
SchedulingConstraintHelper* y, Model* model) {
auto* integer_trail = model->GetOrCreate<IntegerTrail>();
std::vector<AffineExpression> sizes;
int64 min_starts = kint64max;
int64 max_ends = kint64min;
for (int box = 0; box < y->NumTasks(); ++box) {
IntegerVariable s_var = y->DurationVars()[box];
if (s_var == kNoIntegerVariable || integer_trail->IsFixed(s_var)) {
sizes.push_back(AffineExpression(y->DurationMin(box)));
} else {
sizes.push_back(AffineExpression(s_var));
}
min_starts = std::min(min_starts, y->StartMin(box).value());
max_ends = std::max(max_ends, y->EndMax(box).value());
}
const IntegerVariable min_start_var =
model->Add(NewIntegerVariable(min_starts, max_ends));
model->Add(IsEqualToMinOf(min_start_var, y->StartVars()));
const IntegerVariable max_end_var =
model->Add(NewIntegerVariable(min_starts, max_ends));
model->Add(IsEqualToMaxOf(max_end_var, y->EndVars()));
// (max_end - min_start) >= capacity.
const AffineExpression capacity(
model->Add(NewIntegerVariable(0, CapSub(max_ends, min_starts))));
const std::vector<int64> coeffs = {-capacity.coeff.value(), -1, 1};
model->Add(
WeightedSumGreaterOrEqual({capacity.var, min_start_var, max_end_var},
coeffs, capacity.constant.value()));
model->Add(Cumulative(x_intervals, sizes, capacity, x));
}
namespace {
// We want for different propagation to reuse as much as possible the same
// line. The idea behind this is to compute the 'canonical' line to use
// when explaining that boxes overlap on the 'y_dim' dimension. We compute
// the multiple of the biggest power of two that is common to all boxes.
IntegerValue FindCanonicalValue(IntegerValue lb, IntegerValue ub) {
if (lb == ub) return lb;
if (lb <= 0 && ub > 0) return IntegerValue(0);
if (lb < 0 && ub <= 0) {
return -FindCanonicalValue(-ub, -lb);
}
int64 mask = 0;
IntegerValue candidate = ub;
for (int o = 0; o < 62; ++o) {
mask = 2 * mask + 1;
const IntegerValue masked_ub(ub.value() & ~mask);
if (masked_ub >= lb) {
candidate = masked_ub;
} else {
break;
}
}
return candidate;
}
void SplitDisjointBoxes(const SchedulingConstraintHelper& x,
absl::Span<int> boxes,
std::vector<absl::Span<int>>* result) {
result->clear();
std::sort(boxes.begin(), boxes.end(),
[&x](int a, int b) { return x.StartMin(a) < x.StartMin(b); });
int current_start = 0;
std::size_t current_length = 1;
IntegerValue current_max_end = x.EndMax(boxes[0]);
for (int b = 1; b < boxes.size(); ++b) {
const int box = boxes[b];
if (x.StartMin(box) < current_max_end) {
// Merge.
current_length++;
current_max_end = std::max(current_max_end, x.EndMax(box));
} else {
if (current_length > 1) { // Ignore lists of size 1.
result->emplace_back(&boxes[current_start], current_length);
}
current_start = b;
current_length = 1;
current_max_end = x.EndMax(box);
}
}
// Push last span.
if (current_length > 1) {
result->emplace_back(&boxes[current_start], current_length);
}
}
} // namespace
#define RETURN_IF_FALSE(f) \
if (!(f)) return false;
NonOverlappingRectanglesEnergyPropagator::
~NonOverlappingRectanglesEnergyPropagator() {}
bool NonOverlappingRectanglesEnergyPropagator::Propagate() {
const int num_boxes = x_.NumTasks();
x_.SetTimeDirection(true);
y_.SetTimeDirection(true);
active_boxes_.clear();
cached_areas_.resize(num_boxes);
cached_dimensions_.resize(num_boxes);
for (int box = 0; box < num_boxes; ++box) {
cached_areas_[box] = x_.DurationMin(box) * y_.DurationMin(box);
if (cached_areas_[box] == 0) continue;
// TODO(user): Also consider shifted end max.
Dimension& dimension = cached_dimensions_[box];
dimension.x_min = x_.ShiftedStartMin(box);
dimension.x_max = x_.EndMax(box);
dimension.y_min = y_.ShiftedStartMin(box);
dimension.y_max = y_.EndMax(box);
active_boxes_.push_back(box);
}
if (active_boxes_.size() <= 1) return true;
SplitDisjointBoxes(x_, absl::MakeSpan(active_boxes_), &x_split_);
for (absl::Span<int> x_boxes : x_split_) {
SplitDisjointBoxes(y_, x_boxes, &y_split_);
for (absl::Span<int> y_boxes : y_split_) {
IntegerValue total_sum_of_areas(0);
for (const int box : y_boxes) {
total_sum_of_areas += cached_areas_[box];
}
for (const int box : y_boxes) {
RETURN_IF_FALSE(
FailWhenEnergyIsTooLarge(box, y_boxes, total_sum_of_areas));
}
}
}
return true;
}
int NonOverlappingRectanglesEnergyPropagator::RegisterWith(
GenericLiteralWatcher* watcher) {
const int id = watcher->Register(this);
x_.WatchAllTasks(id, watcher, /*watch_start_max=*/false,
/*watch_end_max=*/true);
y_.WatchAllTasks(id, watcher, /*watch_start_max=*/false,
/*watch_end_max=*/true);
return id;
}
void NonOverlappingRectanglesEnergyPropagator::SortBoxesIntoNeighbors(
int box, absl::Span<const int> local_boxes,
IntegerValue total_sum_of_areas) {
const Dimension& box_dim = cached_dimensions_[box];
neighbors_.clear();
for (const int other_box : local_boxes) {
if (other_box == box) continue;
const Dimension& other_dim = cached_dimensions_[other_box];
const IntegerValue span_x = std::max(box_dim.x_max, other_dim.x_max) -
std::min(box_dim.x_min, other_dim.x_min);
const IntegerValue span_y = std::max(box_dim.y_max, other_dim.y_max) -
std::min(box_dim.y_min, other_dim.y_min);
const IntegerValue bounding_area = span_x * span_y;
if (bounding_area < total_sum_of_areas) {
neighbors_.push_back({other_box, bounding_area});
}
}
std::sort(neighbors_.begin(), neighbors_.end());
}
bool NonOverlappingRectanglesEnergyPropagator::FailWhenEnergyIsTooLarge(
int box, absl::Span<const int> local_boxes,
IntegerValue total_sum_of_areas) {
SortBoxesIntoNeighbors(box, local_boxes, total_sum_of_areas);
Dimension area = cached_dimensions_[box];
IntegerValue sum_of_areas = cached_areas_[box];
const auto add_box_energy_in_rectangle_reason = [&](int b) {
x_.AddEnergyAfterReason(b, x_.DurationMin(b), area.x_min);
x_.AddEndMaxReason(b, area.x_max);
y_.AddEnergyAfterReason(b, y_.DurationMin(b), area.y_min);
y_.AddEndMaxReason(b, area.y_max);
};
for (int i = 0; i < neighbors_.size(); ++i) {
const int other_box = neighbors_[i].box;
CHECK_GT(cached_areas_[other_box], 0);
// Update Bounding box.
area.TakeUnionWith(cached_dimensions_[other_box]);
// Update sum of areas.
sum_of_areas += cached_areas_[other_box];
const IntegerValue bounding_area =
(area.x_max - area.x_min) * (area.y_max - area.y_min);
if (bounding_area >= total_sum_of_areas) {
// Nothing will be deduced. Exiting.
return true;
}
if (sum_of_areas > bounding_area) {
x_.ClearReason();
y_.ClearReason();
add_box_energy_in_rectangle_reason(box);
for (int j = 0; j <= i; ++j) {
add_box_energy_in_rectangle_reason(neighbors_[j].box);
}
x_.ImportOtherReasons(y_);
return x_.ReportConflict();
}
}
return true;
}
// Note that x_ and y_ must be initialized with enough intervals when passed
// to the disjunctive propagators.
NonOverlappingRectanglesDisjunctivePropagator::
NonOverlappingRectanglesDisjunctivePropagator(bool strict,
SchedulingConstraintHelper* x,
SchedulingConstraintHelper* y,
Model* model)
: global_x_(*x),
global_y_(*y),
x_(x->NumTasks(), model),
y_(y->NumTasks(), model),
strict_(strict),
watcher_(model->GetOrCreate<GenericLiteralWatcher>()),
overload_checker_(&x_),
forward_detectable_precedences_(true, &x_),
backward_detectable_precedences_(false, &x_),
forward_not_last_(true, &x_),
backward_not_last_(false, &x_),
forward_edge_finding_(true, &x_),
backward_edge_finding_(false, &x_) {}
NonOverlappingRectanglesDisjunctivePropagator::
~NonOverlappingRectanglesDisjunctivePropagator() {}
void NonOverlappingRectanglesDisjunctivePropagator::Register(
int fast_priority, int slow_priority) {
fast_id_ = watcher_->Register(this);
watcher_->SetPropagatorPriority(fast_id_, fast_priority);
global_x_.WatchAllTasks(fast_id_, watcher_);
global_y_.WatchAllTasks(fast_id_, watcher_);
const int slow_id = watcher_->Register(this);
watcher_->SetPropagatorPriority(slow_id, slow_priority);
global_x_.WatchAllTasks(slow_id, watcher_);
global_y_.WatchAllTasks(slow_id, watcher_);
}
bool NonOverlappingRectanglesDisjunctivePropagator::
FindBoxesThatMustOverlapAHorizontalLineAndPropagate(
const SchedulingConstraintHelper& x,
const SchedulingConstraintHelper& y,
std::function<bool()> inner_propagate) {
// Compute relevant events (line in the y dimension).
active_boxes_.clear();
events_time_.clear();
for (int box = 0; box < x.NumTasks(); ++box) {
if (!strict_ && (x.DurationMin(box) == 0 || y.DurationMin(box) == 0)) {
continue;
}
const IntegerValue start_max = y.StartMax(box);
const IntegerValue end_min = y.EndMin(box);
if (start_max < end_min) {
events_time_.push_back(start_max);
active_boxes_.push_back(box);
}
}
// Less than 2 boxes, no propagation.
if (active_boxes_.size() < 2) return true;
// Add boxes to the event lists they always overlap with.
gtl::STLSortAndRemoveDuplicates(&events_time_);
events_overlapping_boxes_.resize(events_time_.size());
for (int i = 0; i < events_time_.size(); ++i) {
events_overlapping_boxes_[i].clear();
}
for (const int box : active_boxes_) {
const IntegerValue start_max = y.StartMax(box);
const IntegerValue end_min = y.EndMin(box);
for (int i = 0; i < events_time_.size(); ++i) {
const IntegerValue t = events_time_[i];
if (t < start_max) continue;
if (t >= end_min) break;
events_overlapping_boxes_[i].push_back(box);
}
}
// Scan events chronologically to remove events where there is only one
// mandatory box, or dominated events lists.
//
// Optimization: We do not resize the events_overlapping_boxes_ vector so that
// we do not free/realloc the memory of the inner vector from one propagate to
// the next. This save a bit more than 1%.
int new_size = 0;
{
for (std::vector<int>& overlapping_boxes : events_overlapping_boxes_) {
if (overlapping_boxes.size() < 2) {
continue; // Remove current event.
}
if (new_size > 0) {
const std::vector<int>& previous_overlapping_boxes =
events_overlapping_boxes_[new_size - 1];
// If the previous set of boxes is included in the current one, replace
// the old one by the new one.
//
// Note that because the events correspond to new boxes, there is no
// need to check for the other side (current set included in previous
// set).
if (std::includes(overlapping_boxes.begin(), overlapping_boxes.end(),
previous_overlapping_boxes.begin(),
previous_overlapping_boxes.end())) {
--new_size;
}
}
std::swap(events_overlapping_boxes_[new_size], overlapping_boxes);
++new_size;
}
}
// Split lists of boxes into disjoint set of boxes (w.r.t. overlap).
boxes_to_propagate_.clear();
reduced_overlapping_boxes_.clear();
for (int i = 0; i < new_size; ++i) {
SplitDisjointBoxes(x, absl::MakeSpan(events_overlapping_boxes_[i]),
&disjoint_boxes_);
for (absl::Span<int> sub_boxes : disjoint_boxes_) {
// Boxes are sorted in a stable manner in the Split method.
// Note that we do not use reduced_overlapping_boxes_ directly so that
// the order of iteration is deterministic.
const auto& insertion = reduced_overlapping_boxes_.insert(sub_boxes);
if (insertion.second) boxes_to_propagate_.push_back(sub_boxes);
}
}
// And finally propagate.
// TODO(user): Sorting of boxes seems influential on the performance. Test.
for (const absl::Span<const int> boxes : boxes_to_propagate_) {
x_.ResetFromSubset(x, boxes);
y_.ResetFromSubset(y, boxes);
// Collect the common overlapping coordinates of all boxes.
IntegerValue lb(kint64min);
IntegerValue ub(kint64max);
for (int i = 0; i < y_.NumTasks(); ++i) {
lb = std::max(lb, y_.StartMax(i));
ub = std::min(ub, y_.EndMin(i) - 1);
}
CHECK_LE(lb, ub);
// TODO(user): We should scan the integer trail to find the oldest
// non-empty common interval. Then we can pick the canonical value within
// it.
// We want for different propagation to reuse as much as possible the same
// line. The idea behind this is to compute the 'canonical' line to use
// when explaining that boxes overlap on the 'y_dim' dimension. We compute
// the multiple of the biggest power of two that is common to all boxes.
const IntegerValue line_to_use_for_reason = FindCanonicalValue(lb, ub);
// Setup x_dim for propagation.
x_.SetOtherHelper(&y_, line_to_use_for_reason);
RETURN_IF_FALSE(inner_propagate());
}
return true;
}
bool NonOverlappingRectanglesDisjunctivePropagator::Propagate() {
global_x_.SetTimeDirection(true);
global_y_.SetTimeDirection(true);
std::function<bool()> inner_propagate;
if (watcher_->GetCurrentId() == fast_id_) {
inner_propagate = [this]() {
if (x_.NumTasks() == 2) {
// In that case, we can use simpler algorithms.
// Note that this case happens frequently (~30% of all calls to this
// method according to our tests).
RETURN_IF_FALSE(PropagateTwoBoxes());
} else {
RETURN_IF_FALSE(overload_checker_.Propagate());
RETURN_IF_FALSE(forward_detectable_precedences_.Propagate());
RETURN_IF_FALSE(backward_detectable_precedences_.Propagate());
}
return true;
};
} else {
inner_propagate = [this]() {
if (x_.NumTasks() <= 2) return true;
RETURN_IF_FALSE(forward_not_last_.Propagate());
RETURN_IF_FALSE(backward_not_last_.Propagate());
RETURN_IF_FALSE(backward_edge_finding_.Propagate());
RETURN_IF_FALSE(forward_edge_finding_.Propagate());
return true;
};
}
RETURN_IF_FALSE(FindBoxesThatMustOverlapAHorizontalLineAndPropagate(
global_x_, global_y_, inner_propagate));
// We can actually swap dimensions to propagate vertically.
RETURN_IF_FALSE(FindBoxesThatMustOverlapAHorizontalLineAndPropagate(
global_y_, global_x_, inner_propagate));
return true;
}
// Specialized propagation on only two boxes that must intersect with the
// given y_line_for_reason.
bool NonOverlappingRectanglesDisjunctivePropagator::PropagateTwoBoxes() {
// For each direction and each order, we test if the boxes can be disjoint.
const int state =
(x_.EndMin(0) <= x_.StartMax(1)) + 2 * (x_.EndMin(1) <= x_.StartMax(0));
const auto left_box_before_right_box = [this](int left, int right) {
// left box pushes right box.
const IntegerValue left_end_min = x_.EndMin(left);
if (left_end_min > x_.StartMin(right)) {
x_.ClearReason();
x_.AddReasonForBeingBefore(left, right);
x_.AddEndMinReason(left, left_end_min);
RETURN_IF_FALSE(x_.IncreaseStartMin(right, left_end_min));
}
// right box pushes left box.
const IntegerValue right_start_max = x_.StartMax(right);
if (right_start_max < x_.EndMax(left)) {
x_.ClearReason();
x_.AddReasonForBeingBefore(left, right);
x_.AddStartMaxReason(right, right_start_max);
RETURN_IF_FALSE(x_.DecreaseEndMax(left, right_start_max));
}
return true;
};
switch (state) {
case 0: { // Conflict.
x_.ClearReason();
x_.AddReasonForBeingBefore(0, 1);
x_.AddReasonForBeingBefore(1, 0);
return x_.ReportConflict();
}
case 1: { // b1 is left of b2.
return left_box_before_right_box(0, 1);
}
case 2: { // b2 is left of b1.
return left_box_before_right_box(1, 0);
}
default: { // Nothing to deduce.
return true;
}
}
}
#undef RETURN_IF_FALSE
} // namespace sat
} // namespace operations_research