forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
scip_interface.cc
938 lines (850 loc) · 36 KB
/
scip_interface.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#if defined(USE_SCIP)
#include <stddef.h>
#include <algorithm>
#include <limits>
#include <memory>
#include <string>
#include <vector>
#include "absl/status/status.h"
#include "absl/strings/str_format.h"
#include "absl/types/optional.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/hash.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/base/status_macros.h"
#include "ortools/base/timer.h"
#include "ortools/linear_solver/linear_solver.h"
#include "ortools/linear_solver/linear_solver.pb.h"
#include "ortools/linear_solver/scip_helper_macros.h"
#include "ortools/linear_solver/scip_proto_solver.h"
#include "scip/cons_indicator.h"
#include "scip/scip.h"
#include "scip/scip_prob.h"
#include "scip/scipdefplugins.h"
DEFINE_bool(scip_feasibility_emphasis, false,
"When true, emphasize search towards feasibility. This may or "
"may not result in speedups in some problems.");
namespace operations_research {
class SCIPInterface : public MPSolverInterface {
public:
explicit SCIPInterface(MPSolver* solver);
~SCIPInterface() override;
void SetOptimizationDirection(bool maximize) override;
MPSolver::ResultStatus Solve(const MPSolverParameters& param) override;
absl::optional<MPSolutionResponse> DirectlySolveProto(
const MPModelRequest& request) override;
void Reset() override;
void SetVariableBounds(int var_index, double lb, double ub) override;
void SetVariableInteger(int var_index, bool integer) override;
void SetConstraintBounds(int row_index, double lb, double ub) override;
void AddRowConstraint(MPConstraint* ct) override;
bool AddIndicatorConstraint(MPConstraint* ct) override;
void AddVariable(MPVariable* var) override;
void SetCoefficient(MPConstraint* constraint, const MPVariable* variable,
double new_value, double old_value) override;
void ClearConstraint(MPConstraint* constraint) override;
void SetObjectiveCoefficient(const MPVariable* variable,
double coefficient) override;
void SetObjectiveOffset(double value) override;
void ClearObjective() override;
void BranchingPriorityChangedForVariable(int var_index) override;
int64 iterations() const override;
int64 nodes() const override;
double best_objective_bound() const override;
MPSolver::BasisStatus row_status(int constraint_index) const override {
LOG(DFATAL) << "Basis status only available for continuous problems";
return MPSolver::FREE;
}
MPSolver::BasisStatus column_status(int variable_index) const override {
LOG(DFATAL) << "Basis status only available for continuous problems";
return MPSolver::FREE;
}
bool IsContinuous() const override { return false; }
bool IsLP() const override { return false; }
bool IsMIP() const override { return true; }
void ExtractNewVariables() override;
void ExtractNewConstraints() override;
void ExtractObjective() override;
std::string SolverVersion() const override {
return absl::StrFormat("SCIP %d.%d.%d [LP solver: %s]", SCIPmajorVersion(),
SCIPminorVersion(), SCIPtechVersion(),
SCIPlpiGetSolverName());
}
bool InterruptSolve() override {
if (scip_ == nullptr) return true; // NOTE(user): Is this weird?
return SCIPinterruptSolve(scip_) == SCIP_OKAY;
}
void* underlying_solver() override { return reinterpret_cast<void*>(scip_); }
private:
void SetParameters(const MPSolverParameters& param) override;
void SetRelativeMipGap(double value) override;
void SetPrimalTolerance(double value) override;
void SetDualTolerance(double value) override;
void SetPresolveMode(int presolve) override;
void SetScalingMode(int scaling) override;
void SetLpAlgorithm(int lp_algorithm) override;
// SCIP parameters allow to lower and upper bound the number of threads used
// (via "parallel/minnthreads" and "parallel/maxnthread", respectively). Here,
// we interpret "num_threads" to mean "parallel/maxnthreads", as this is what
// most clients probably want to do. To change "parallel/minnthreads" use
// SetSolverSpecificParametersAsString(). However, one must change
// "parallel/maxnthread" with SetNumThreads() because only this will inform
// the interface to run SCIPsolveConcurrent() instead of SCIPsolve() which is
// necessery to enable multi-threading.
absl::Status SetNumThreads(int num_threads) override;
bool SetSolverSpecificParametersAsString(
const std::string& parameters) override;
void SetUnsupportedIntegerParam(
MPSolverParameters::IntegerParam param) override;
void SetIntegerParamToUnsupportedValue(MPSolverParameters::IntegerParam param,
int value) override;
// Copy sol from SCIP to MPSolver.
void SetSolution(SCIP_SOL* solution);
absl::Status CreateSCIP();
void DeleteSCIP();
// SCIP has many internal checks (many of which are numerical) that can fail
// during various phases: upon startup, when loading the model, when solving,
// etc. Often, the user is meant to stop at the first error, but since most
// of the linear solver interface API doesn't support "error reporting", we
// store a potential error status here.
// If this status isn't OK, then most operations will silently be cancelled.
absl::Status status_;
SCIP* scip_;
std::vector<SCIP_VAR*> scip_variables_;
std::vector<SCIP_CONS*> scip_constraints_;
bool branching_priority_reset_ = false;
};
SCIPInterface::SCIPInterface(MPSolver* solver)
: MPSolverInterface(solver), scip_(nullptr) {
status_ = CreateSCIP();
}
SCIPInterface::~SCIPInterface() { DeleteSCIP(); }
void SCIPInterface::Reset() {
DeleteSCIP();
status_ = CreateSCIP();
ResetExtractionInformation();
}
absl::Status SCIPInterface::CreateSCIP() {
RETURN_IF_SCIP_ERROR(SCIPcreate(&scip_));
RETURN_IF_SCIP_ERROR(SCIPincludeDefaultPlugins(scip_));
// Set the emphasis to enum SCIP_PARAMEMPHASIS_FEASIBILITY. Do not print
// the new parameter (quiet = true).
if (FLAGS_scip_feasibility_emphasis) {
RETURN_IF_SCIP_ERROR(SCIPsetEmphasis(scip_, SCIP_PARAMEMPHASIS_FEASIBILITY,
/*quiet=*/true));
}
// Default clock type. We use wall clock time because getting CPU user seconds
// involves calling times() which is very expensive.
// NOTE(user): Also, time limit based on CPU user seconds is *NOT* thread
// safe. We observed that different instances of SCIP running concurrently
// in different threads consume the time limit *together*. E.g., 2 threads
// running SCIP with time limit 10s each will both terminate after ~5s.
RETURN_IF_SCIP_ERROR(
SCIPsetIntParam(scip_, "timing/clocktype", SCIP_CLOCKTYPE_WALL));
RETURN_IF_SCIP_ERROR(SCIPcreateProb(scip_, solver_->name_.c_str(), nullptr,
nullptr, nullptr, nullptr, nullptr,
nullptr, nullptr));
RETURN_IF_SCIP_ERROR(SCIPsetObjsense(
scip_, maximize_ ? SCIP_OBJSENSE_MAXIMIZE : SCIP_OBJSENSE_MINIMIZE));
return absl::OkStatus();
}
void SCIPInterface::DeleteSCIP() {
// NOTE(user): DeleteSCIP() shouldn't "give up" mid-stage if it fails, since
// it might be the user's chance to reset the solver to start fresh without
// errors. The current code isn't perfect, since some CHECKs() remain, but
// hopefully they'll never be triggered in practice.
CHECK(scip_ != nullptr);
for (int i = 0; i < scip_variables_.size(); ++i) {
CHECK_EQ(SCIPreleaseVar(scip_, &scip_variables_[i]), SCIP_OKAY);
}
scip_variables_.clear();
for (int j = 0; j < scip_constraints_.size(); ++j) {
CHECK_EQ(SCIPreleaseCons(scip_, &scip_constraints_[j]), SCIP_OKAY);
}
scip_constraints_.clear();
CHECK_EQ(SCIPfree(&scip_), SCIP_OKAY);
scip_ = nullptr;
}
#define RETURN_IF_ALREADY_IN_ERROR_STATE \
do { \
if (!status_.ok()) { \
LOG_EVERY_N(INFO, 10) << "Early abort: SCIP is in error state."; \
return; \
} \
} while (false)
#define RETURN_AND_STORE_IF_SCIP_ERROR(x) \
do { \
status_ = SCIP_TO_STATUS(x); \
if (!status_.ok()) return; \
} while (false)
// Not cached.
void SCIPInterface::SetOptimizationDirection(bool maximize) {
RETURN_IF_ALREADY_IN_ERROR_STATE;
InvalidateSolutionSynchronization();
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPfreeTransform(scip_));
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPsetObjsense(
scip_, maximize ? SCIP_OBJSENSE_MAXIMIZE : SCIP_OBJSENSE_MINIMIZE));
}
void SCIPInterface::SetVariableBounds(int var_index, double lb, double ub) {
RETURN_IF_ALREADY_IN_ERROR_STATE;
InvalidateSolutionSynchronization();
if (variable_is_extracted(var_index)) {
// Not cached if the variable has been extracted.
DCHECK_LT(var_index, last_variable_index_);
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPfreeTransform(scip_));
RETURN_AND_STORE_IF_SCIP_ERROR(
SCIPchgVarLb(scip_, scip_variables_[var_index], lb));
RETURN_AND_STORE_IF_SCIP_ERROR(
SCIPchgVarUb(scip_, scip_variables_[var_index], ub));
} else {
sync_status_ = MUST_RELOAD;
}
}
void SCIPInterface::SetVariableInteger(int var_index, bool integer) {
RETURN_IF_ALREADY_IN_ERROR_STATE;
InvalidateSolutionSynchronization();
if (variable_is_extracted(var_index)) {
// Not cached if the variable has been extracted.
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPfreeTransform(scip_));
#if (SCIP_VERSION >= 210)
SCIP_Bool infeasible = false;
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPchgVarType(
scip_, scip_variables_[var_index],
integer ? SCIP_VARTYPE_INTEGER : SCIP_VARTYPE_CONTINUOUS, &infeasible));
#else
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPchgVarType(
scip_, scip_variables_[var_index],
integer ? SCIP_VARTYPE_INTEGER : SCIP_VARTYPE_CONTINUOUS));
#endif // SCIP_VERSION >= 210
} else {
sync_status_ = MUST_RELOAD;
}
}
void SCIPInterface::SetConstraintBounds(int index, double lb, double ub) {
RETURN_IF_ALREADY_IN_ERROR_STATE;
InvalidateSolutionSynchronization();
if (constraint_is_extracted(index)) {
// Not cached if the row has been extracted.
DCHECK_LT(index, last_constraint_index_);
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPfreeTransform(scip_));
RETURN_AND_STORE_IF_SCIP_ERROR(
SCIPchgLhsLinear(scip_, scip_constraints_[index], lb));
RETURN_AND_STORE_IF_SCIP_ERROR(
SCIPchgRhsLinear(scip_, scip_constraints_[index], ub));
} else {
sync_status_ = MUST_RELOAD;
}
}
void SCIPInterface::SetCoefficient(MPConstraint* constraint,
const MPVariable* variable, double new_value,
double old_value) {
RETURN_IF_ALREADY_IN_ERROR_STATE;
InvalidateSolutionSynchronization();
if (variable_is_extracted(variable->index()) &&
constraint_is_extracted(constraint->index())) {
// The modification of the coefficient for an extracted row and
// variable is not cached.
DCHECK_LT(constraint->index(), last_constraint_index_);
DCHECK_LT(variable->index(), last_variable_index_);
// SCIP does not allow to set a coefficient directly, so we add the
// difference between the new and the old value instead.
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPfreeTransform(scip_));
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPaddCoefLinear(
scip_, scip_constraints_[constraint->index()],
scip_variables_[variable->index()], new_value - old_value));
} else {
// The modification of an unextracted row or variable is cached
// and handled in ExtractModel.
sync_status_ = MUST_RELOAD;
}
}
// Not cached
void SCIPInterface::ClearConstraint(MPConstraint* constraint) {
RETURN_IF_ALREADY_IN_ERROR_STATE;
InvalidateSolutionSynchronization();
const int constraint_index = constraint->index();
// Constraint may not have been extracted yet.
if (!constraint_is_extracted(constraint_index)) return;
for (const auto& entry : constraint->coefficients_) {
const int var_index = entry.first->index();
const double old_coef_value = entry.second;
DCHECK(variable_is_extracted(var_index));
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPfreeTransform(scip_));
// Set coefficient to zero by substracting the old coefficient value.
RETURN_AND_STORE_IF_SCIP_ERROR(
SCIPaddCoefLinear(scip_, scip_constraints_[constraint_index],
scip_variables_[var_index], -old_coef_value));
}
}
// Cached
void SCIPInterface::SetObjectiveCoefficient(const MPVariable* variable,
double coefficient) {
sync_status_ = MUST_RELOAD;
}
// Cached
void SCIPInterface::SetObjectiveOffset(double value) {
sync_status_ = MUST_RELOAD;
}
// Clear objective of all its terms.
void SCIPInterface::ClearObjective() {
RETURN_IF_ALREADY_IN_ERROR_STATE;
sync_status_ = MUST_RELOAD;
InvalidateSolutionSynchronization();
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPfreeTransform(scip_));
// Clear linear terms
for (const auto& entry : solver_->objective_->coefficients_) {
const int var_index = entry.first->index();
// Variable may have not been extracted yet.
if (!variable_is_extracted(var_index)) {
DCHECK_NE(MODEL_SYNCHRONIZED, sync_status_);
} else {
RETURN_AND_STORE_IF_SCIP_ERROR(
SCIPchgVarObj(scip_, scip_variables_[var_index], 0.0));
}
}
// Note: we don't clear the objective offset here because it's not necessary
// (it's always reset anyway in ExtractObjective) and we sometimes run into
// crashes when clearing the whole model (see
// http://test/OCL:253365573:BASE:253566457:1560777456754:e181f4ab).
// It's not worth to spend time investigating this issue.
}
void SCIPInterface::BranchingPriorityChangedForVariable(int var_index) {
// As of 2019-05, SCIP does not support setting branching priority for
// variables in models that have already been solved. Therefore, we force
// reset the model when setting the priority on an already extracted variable.
// Note that this is a more drastic step than merely changing the sync_status.
// This may be slightly conservative, as it is technically possible that
// the extraction has occurred without a call to Solve().
if (variable_is_extracted(var_index)) {
branching_priority_reset_ = true;
}
}
void SCIPInterface::AddRowConstraint(MPConstraint* ct) {
sync_status_ = MUST_RELOAD;
}
bool SCIPInterface::AddIndicatorConstraint(MPConstraint* ct) {
sync_status_ = MUST_RELOAD;
return true;
}
void SCIPInterface::AddVariable(MPVariable* var) { sync_status_ = MUST_RELOAD; }
void SCIPInterface::ExtractNewVariables() {
RETURN_IF_ALREADY_IN_ERROR_STATE;
int total_num_vars = solver_->variables_.size();
if (total_num_vars > last_variable_index_) {
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPfreeTransform(scip_));
// Define new variables
for (int j = last_variable_index_; j < total_num_vars; ++j) {
MPVariable* const var = solver_->variables_[j];
DCHECK(!variable_is_extracted(j));
set_variable_as_extracted(j, true);
SCIP_VAR* scip_var = nullptr;
// The true objective coefficient will be set later in ExtractObjective.
double tmp_obj_coef = 0.0;
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPcreateVar(
scip_, &scip_var, var->name().c_str(), var->lb(), var->ub(),
tmp_obj_coef,
var->integer() ? SCIP_VARTYPE_INTEGER : SCIP_VARTYPE_CONTINUOUS, true,
false, nullptr, nullptr, nullptr, nullptr, nullptr));
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPaddVar(scip_, scip_var));
scip_variables_.push_back(scip_var);
const int branching_priority = var->branching_priority();
if (branching_priority != 0) {
const int index = var->index();
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPchgVarBranchPriority(
scip_, scip_variables_[index], branching_priority));
}
}
// Add new variables to existing constraints.
for (int i = 0; i < last_constraint_index_; i++) {
MPConstraint* const ct = solver_->constraints_[i];
for (const auto& entry : ct->coefficients_) {
const int var_index = entry.first->index();
DCHECK(variable_is_extracted(var_index));
if (var_index >= last_variable_index_) {
// The variable is new, so we know the previous coefficient
// value was 0 and we can directly add the coefficient.
RETURN_AND_STORE_IF_SCIP_ERROR(
SCIPaddCoefLinear(scip_, scip_constraints_[i],
scip_variables_[var_index], entry.second));
}
}
}
}
}
void SCIPInterface::ExtractNewConstraints() {
RETURN_IF_ALREADY_IN_ERROR_STATE;
int total_num_rows = solver_->constraints_.size();
if (last_constraint_index_ < total_num_rows) {
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPfreeTransform(scip_));
// Find the length of the longest row.
int max_row_length = 0;
for (int i = last_constraint_index_; i < total_num_rows; ++i) {
MPConstraint* const ct = solver_->constraints_[i];
DCHECK(!constraint_is_extracted(i));
set_constraint_as_extracted(i, true);
if (ct->coefficients_.size() > max_row_length) {
max_row_length = ct->coefficients_.size();
}
}
std::unique_ptr<SCIP_VAR*[]> vars(new SCIP_VAR*[max_row_length]);
std::unique_ptr<double[]> coeffs(new double[max_row_length]);
// Add each new constraint.
for (int i = last_constraint_index_; i < total_num_rows; ++i) {
MPConstraint* const ct = solver_->constraints_[i];
DCHECK(constraint_is_extracted(i));
const int size = ct->coefficients_.size();
int j = 0;
for (const auto& entry : ct->coefficients_) {
const int var_index = entry.first->index();
DCHECK(variable_is_extracted(var_index));
vars[j] = scip_variables_[var_index];
coeffs[j] = entry.second;
j++;
}
SCIP_CONS* scip_constraint = nullptr;
const bool is_lazy = ct->is_lazy();
if (ct->indicator_variable() != nullptr) {
const int ind_index = ct->indicator_variable()->index();
DCHECK(variable_is_extracted(ind_index));
SCIP_VAR* ind_var = scip_variables_[ind_index];
if (ct->indicator_value() == 0) {
RETURN_AND_STORE_IF_SCIP_ERROR(
SCIPgetNegatedVar(scip_, scip_variables_[ind_index], &ind_var));
}
if (ct->ub() < std::numeric_limits<double>::infinity()) {
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPcreateConsIndicator(
scip_, &scip_constraint, ct->name().c_str(), ind_var, size,
vars.get(), coeffs.get(), ct->ub(),
/*initial=*/!is_lazy,
/*separate=*/true,
/*enforce=*/true,
/*check=*/true,
/*propagate=*/true,
/*local=*/false,
/*dynamic=*/false,
/*removable=*/is_lazy,
/*stickingatnode=*/false));
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPaddCons(scip_, scip_constraint));
scip_constraints_.push_back(scip_constraint);
}
if (ct->lb() > -std::numeric_limits<double>::infinity()) {
for (int i = 0; i < size; ++i) {
coeffs[i] *= -1;
}
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPcreateConsIndicator(
scip_, &scip_constraint, ct->name().c_str(), ind_var, size,
vars.get(), coeffs.get(), -ct->lb(),
/*initial=*/!is_lazy,
/*separate=*/true,
/*enforce=*/true,
/*check=*/true,
/*propagate=*/true,
/*local=*/false,
/*dynamic=*/false,
/*removable=*/is_lazy,
/*stickingatnode=*/false));
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPaddCons(scip_, scip_constraint));
scip_constraints_.push_back(scip_constraint);
}
} else {
// See
// http://scip.zib.de/doc/html/cons__linear_8h.php#aa7aed137a4130b35b168812414413481
// for an explanation of the parameters.
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPcreateConsLinear(
scip_, &scip_constraint, ct->name().c_str(), size, vars.get(),
coeffs.get(), ct->lb(), ct->ub(),
/*initial=*/!is_lazy,
/*separate=*/true,
/*enforce=*/true,
/*check=*/true,
/*propagate=*/true,
/*local=*/false,
/*modifiable=*/false,
/*dynamic=*/false,
/*removable=*/is_lazy,
/*stickingatnode=*/false));
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPaddCons(scip_, scip_constraint));
scip_constraints_.push_back(scip_constraint);
}
}
}
}
void SCIPInterface::ExtractObjective() {
RETURN_IF_ALREADY_IN_ERROR_STATE;
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPfreeTransform(scip_));
// Linear objective: set objective coefficients for all variables (some might
// have been modified).
for (const auto& entry : solver_->objective_->coefficients_) {
const int var_index = entry.first->index();
const double obj_coef = entry.second;
RETURN_AND_STORE_IF_SCIP_ERROR(
SCIPchgVarObj(scip_, scip_variables_[var_index], obj_coef));
}
// Constant term: change objective offset.
RETURN_AND_STORE_IF_SCIP_ERROR(SCIPaddOrigObjoffset(
scip_, solver_->Objective().offset() - SCIPgetOrigObjoffset(scip_)));
}
#define RETURN_ABNORMAL_IF_BAD_STATUS \
do { \
if (!status_.ok()) { \
LOG_IF(INFO, solver_->OutputIsEnabled()) \
<< "Invalid SCIP status: " << status_; \
return result_status_ = MPSolver::ABNORMAL; \
} \
} while (false)
#define RETURN_ABNORMAL_IF_SCIP_ERROR(x) \
do { \
RETURN_ABNORMAL_IF_BAD_STATUS; \
status_ = SCIP_TO_STATUS(x); \
RETURN_ABNORMAL_IF_BAD_STATUS; \
} while (false);
MPSolver::ResultStatus SCIPInterface::Solve(const MPSolverParameters& param) {
// "status_" may encode a variety of failure scenarios, many of which would
// correspond to another MPResultStatus than ABNORMAL, but since SCIP is a
// moving target, we use the most likely error code here (abnormalities,
// often numeric), and rely on the user enabling output to see more details.
RETURN_ABNORMAL_IF_BAD_STATUS;
WallTimer timer;
timer.Start();
// Note that SCIP does not provide any incrementality.
// TODO(user): Is that still true now (2018) ?
if (param.GetIntegerParam(MPSolverParameters::INCREMENTALITY) ==
MPSolverParameters::INCREMENTALITY_OFF ||
branching_priority_reset_) {
Reset();
branching_priority_reset_ = false;
}
// Set log level.
SCIPsetMessagehdlrQuiet(scip_, quiet_);
// Special case if the model is empty since SCIP expects a non-empty model.
if (solver_->variables_.empty() && solver_->constraints_.empty()) {
sync_status_ = SOLUTION_SYNCHRONIZED;
result_status_ = MPSolver::OPTIMAL;
objective_value_ = solver_->Objective().offset();
return result_status_;
}
ExtractModel();
VLOG(1) << absl::StrFormat("Model built in %s.",
absl::FormatDuration(timer.GetDuration()));
// Time limit.
if (solver_->time_limit() != 0) {
VLOG(1) << "Setting time limit = " << solver_->time_limit() << " ms.";
RETURN_ABNORMAL_IF_SCIP_ERROR(
SCIPsetRealParam(scip_, "limits/time", solver_->time_limit_in_secs()));
} else {
RETURN_ABNORMAL_IF_SCIP_ERROR(SCIPresetParam(scip_, "limits/time"));
}
// We first set our internal MPSolverParameters from param and then set any
// user specified internal solver, ie. SCIP, parameters via
// solver_specific_parameter_string_.
// Default MPSolverParameters can override custom parameters (for example for
// presolving) and therefore we apply MPSolverParameters first.
SetParameters(param);
solver_->SetSolverSpecificParametersAsString(
solver_->solver_specific_parameter_string_);
// Use the solution hint if any.
if (!solver_->solution_hint_.empty()) {
SCIP_SOL* solution;
bool is_solution_partial = false;
const int num_vars = solver_->variables_.size();
if (solver_->solution_hint_.size() != num_vars) {
// We start by creating an empty partial solution.
RETURN_ABNORMAL_IF_SCIP_ERROR(
SCIPcreatePartialSol(scip_, &solution, nullptr));
is_solution_partial = true;
} else {
// We start by creating the all-zero solution.
RETURN_ABNORMAL_IF_SCIP_ERROR(SCIPcreateSol(scip_, &solution, nullptr));
}
// Fill the other variables from the given solution hint.
for (const std::pair<const MPVariable*, double>& p :
solver_->solution_hint_) {
RETURN_ABNORMAL_IF_SCIP_ERROR(SCIPsetSolVal(
scip_, solution, scip_variables_[p.first->index()], p.second));
}
if (!is_solution_partial) {
SCIP_Bool is_feasible;
RETURN_ABNORMAL_IF_SCIP_ERROR(SCIPcheckSol(
scip_, solution, /*printreason=*/false, /*completely=*/true,
/*checkbounds=*/true, /*checkintegrality=*/true, /*checklprows=*/true,
&is_feasible));
VLOG(1) << "Solution hint is "
<< (is_feasible ? "FEASIBLE" : "INFEASIBLE");
}
// TODO(user): I more or less copied this from the SCIPreadSol() code that
// reads a solution from a file. I am not sure what SCIPisTransformed() is
// or what is the difference between the try and add version. In any case
// this seems to always call SCIPaddSolFree() for now and it works.
SCIP_Bool is_stored;
if (!is_solution_partial && SCIPisTransformed(scip_)) {
RETURN_ABNORMAL_IF_SCIP_ERROR(SCIPtrySolFree(
scip_, &solution, /*printreason=*/false, /*completely=*/true,
/*checkbounds=*/true, /*checkintegrality=*/true, /*checklprows=*/true,
&is_stored));
} else {
RETURN_ABNORMAL_IF_SCIP_ERROR(
SCIPaddSolFree(scip_, &solution, &is_stored));
}
}
// Solve.
timer.Restart();
RETURN_ABNORMAL_IF_SCIP_ERROR(solver_->GetNumThreads() > 1
? SCIPsolveConcurrent(scip_)
: SCIPsolve(scip_));
VLOG(1) << absl::StrFormat("Solved in %s.",
absl::FormatDuration(timer.GetDuration()));
// Get the results.
SCIP_SOL* const solution = SCIPgetBestSol(scip_);
if (solution != nullptr) {
// If optimal or feasible solution is found.
SetSolution(solution);
} else {
VLOG(1) << "No feasible solution found.";
}
// Check the status: optimal, infeasible, etc.
SCIP_STATUS scip_status = SCIPgetStatus(scip_);
switch (scip_status) {
case SCIP_STATUS_OPTIMAL:
result_status_ = MPSolver::OPTIMAL;
break;
case SCIP_STATUS_GAPLIMIT:
// To be consistent with the other solvers.
result_status_ = MPSolver::OPTIMAL;
break;
case SCIP_STATUS_INFEASIBLE:
result_status_ = MPSolver::INFEASIBLE;
break;
case SCIP_STATUS_UNBOUNDED:
result_status_ = MPSolver::UNBOUNDED;
break;
case SCIP_STATUS_INFORUNBD:
// TODO(user): We could introduce our own "infeasible or
// unbounded" status.
result_status_ = MPSolver::INFEASIBLE;
break;
default:
if (solution != nullptr) {
result_status_ = MPSolver::FEASIBLE;
} else if (scip_status == SCIP_STATUS_TIMELIMIT ||
scip_status == SCIP_STATUS_TOTALNODELIMIT) {
result_status_ = MPSolver::NOT_SOLVED;
} else {
result_status_ = MPSolver::ABNORMAL;
}
break;
}
RETURN_ABNORMAL_IF_SCIP_ERROR(SCIPresetParams(scip_));
sync_status_ = SOLUTION_SYNCHRONIZED;
return result_status_;
}
void SCIPInterface::SetSolution(SCIP_SOL* solution) {
objective_value_ = SCIPgetSolOrigObj(scip_, solution);
VLOG(1) << "objective=" << objective_value_;
for (int i = 0; i < solver_->variables_.size(); ++i) {
MPVariable* const var = solver_->variables_[i];
const int var_index = var->index();
const double val =
SCIPgetSolVal(scip_, solution, scip_variables_[var_index]);
var->set_solution_value(val);
VLOG(3) << var->name() << "=" << val;
}
}
absl::optional<MPSolutionResponse> SCIPInterface::DirectlySolveProto(
const MPModelRequest& request) {
// ScipSolveProto doesn't solve concurrently.
if (solver_->GetNumThreads() > 1) return absl::nullopt;
const auto status_or = ScipSolveProto(request);
if (status_or.ok()) return status_or.value();
// Special case: if something is not implemented yet, fall back to solving
// through MPSolver.
if (absl::IsUnimplemented(status_or.status())) return absl::nullopt;
if (request.enable_internal_solver_output()) {
LOG(INFO) << "Invalid SCIP status: " << status_or.status();
}
MPSolutionResponse response;
response.set_status(MPSOLVER_NOT_SOLVED);
response.set_status_str(status_or.status().ToString());
return response;
}
int64 SCIPInterface::iterations() const {
// NOTE(user): As of 2018-12 it doesn't run in the stubby server, and is
// a specialized call, so it's ok to crash if the status is broken.
if (!CheckSolutionIsSynchronized()) return kUnknownNumberOfIterations;
return SCIPgetNLPIterations(scip_);
}
int64 SCIPInterface::nodes() const {
// NOTE(user): Same story as iterations(): it's OK to crash here.
if (!CheckSolutionIsSynchronized()) return kUnknownNumberOfNodes;
// This is the total number of nodes used in the solve, potentially across
// multiple branch-and-bound trees. Use limits/totalnodes (rather than
// limits/nodes) to control this value.
return SCIPgetNTotalNodes(scip_);
}
double SCIPInterface::best_objective_bound() const {
// NOTE(user): Same story as iterations(): it's OK to crash here.
if (!CheckSolutionIsSynchronized() || !CheckBestObjectiveBoundExists()) {
return trivial_worst_objective_bound();
}
if (solver_->variables_.empty() && solver_->constraints_.empty()) {
// Special case for empty model.
return solver_->Objective().offset();
} else {
return SCIPgetDualbound(scip_);
}
}
void SCIPInterface::SetParameters(const MPSolverParameters& param) {
SetCommonParameters(param);
SetMIPParameters(param);
}
void SCIPInterface::SetRelativeMipGap(double value) {
// NOTE(user): We don't want to call RETURN_IF_ALREADY_IN_ERROR_STATE here,
// because even if the solver is in an error state, the user might be setting
// some parameters and then "restoring" the solver to a non-error state by
// calling Reset(), which should *not* reset the parameters.
// So we want the parameter-setting functions to be resistant to being in an
// error state, essentially. What we do is:
// - we call the parameter-setting function anyway (I'm assuming that SCIP
// won't crash even if we're in an error state. I did *not* verify this).
// - if that call yielded an error *and* we weren't already in an error state,
// set the state to that error we just got.
const auto status =
SCIP_TO_STATUS(SCIPsetRealParam(scip_, "limits/gap", value));
if (status_.ok()) status_ = status;
}
void SCIPInterface::SetPrimalTolerance(double value) {
// SCIP automatically updates numerics/lpfeastol if the primal tolerance is
// tighter. Doing that it unconditionally logs this modification to stderr. By
// setting numerics/lpfeastol first we avoid this unwanted log.
// double current_lpfeastol = 0.0;
// CHECK_EQ(SCIP_OKAY,
// SCIPgetRealParam(scip_, "numerics/lpfeastol", ¤t_lpfeastol));
// if (value < current_lpfeastol) {
// // See the NOTE on SetRelativeMipGap().
// const auto status =
// SCIP_TO_STATUS(SCIPsetRealParam(scip_, "numerics/lpfeastol", value));
// if (status_.ok()) status_ = status;
// }
// See the NOTE on SetRelativeMipGap().
const auto status =
SCIP_TO_STATUS(SCIPsetRealParam(scip_, "numerics/feastol", value));
if (status_.ok()) status_ = status;
}
void SCIPInterface::SetDualTolerance(double value) {
const auto status =
SCIP_TO_STATUS(SCIPsetRealParam(scip_, "numerics/dualfeastol", value));
if (status_.ok()) status_ = status;
}
void SCIPInterface::SetPresolveMode(int presolve) {
// See the NOTE on SetRelativeMipGap().
switch (presolve) {
case MPSolverParameters::PRESOLVE_OFF: {
const auto status =
SCIP_TO_STATUS(SCIPsetIntParam(scip_, "presolving/maxrounds", 0));
if (status_.ok()) status_ = status;
return;
}
case MPSolverParameters::PRESOLVE_ON: {
const auto status =
SCIP_TO_STATUS(SCIPsetIntParam(scip_, "presolving/maxrounds", -1));
if (status_.ok()) status_ = status;
return;
}
default: {
SetIntegerParamToUnsupportedValue(MPSolverParameters::PRESOLVE, presolve);
return;
}
}
}
void SCIPInterface::SetScalingMode(int scaling) {
SetUnsupportedIntegerParam(MPSolverParameters::SCALING);
}
// Only the root LP algorithm is set as setting the node LP to a
// non-default value rarely is beneficial. The node LP algorithm could
// be set as well with "lp/resolvealgorithm".
void SCIPInterface::SetLpAlgorithm(int lp_algorithm) {
// See the NOTE on SetRelativeMipGap().
switch (lp_algorithm) {
case MPSolverParameters::DUAL: {
const auto status =
SCIP_TO_STATUS(SCIPsetCharParam(scip_, "lp/initalgorithm", 'd'));
if (status_.ok()) status_ = status;
return;
}
case MPSolverParameters::PRIMAL: {
const auto status =
SCIP_TO_STATUS(SCIPsetCharParam(scip_, "lp/initalgorithm", 'p'));
if (status_.ok()) status_ = status;
return;
}
case MPSolverParameters::BARRIER: {
// Barrier with crossover.
const auto status =
SCIP_TO_STATUS(SCIPsetCharParam(scip_, "lp/initalgorithm", 'p'));
if (status_.ok()) status_ = status;
return;
}
default: {
SetIntegerParamToUnsupportedValue(MPSolverParameters::LP_ALGORITHM,
lp_algorithm);
return;
}
}
}
void SCIPInterface::SetUnsupportedIntegerParam(
MPSolverParameters::IntegerParam param) {
MPSolverInterface::SetUnsupportedIntegerParam(param);
if (status_.ok()) {
status_ = absl::InvalidArgumentError(absl::StrFormat(
"Tried to set unsupported integer parameter %d", param));
}
}
void SCIPInterface::SetIntegerParamToUnsupportedValue(
MPSolverParameters::IntegerParam param, int value) {
MPSolverInterface::SetIntegerParamToUnsupportedValue(param, value);
if (status_.ok()) {
status_ = absl::InvalidArgumentError(absl::StrFormat(
"Tried to set integer parameter %d to unsupported value %d", param,
value));
}
}
absl::Status SCIPInterface::SetNumThreads(int num_threads) {
if (SetSolverSpecificParametersAsString(
absl::StrFormat("parallel/maxnthreads = %d\n", num_threads))) {
return absl::OkStatus();
}
return absl::InternalError(
"Could not set parallel/maxnthreads, which may "
"indicate that SCIP API has changed.");
}
bool SCIPInterface::SetSolverSpecificParametersAsString(
const std::string& parameters) {
const absl::Status s =
operations_research::ScipSetSolverSpecificParameters(parameters, scip_);
if (!s.ok()) {
LOG(WARNING) << "Failed to set SCIP parameter string: " << parameters
<< ", error is: " << s;
}
return s.ok();
}
MPSolverInterface* BuildSCIPInterface(MPSolver* const solver) {
return new SCIPInterface(solver);
}
} // namespace operations_research
#endif // #if defined(USE_SCIP)
#undef RETURN_AND_STORE_IF_SCIP_ERROR
#undef RETURN_IF_ALREADY_IN_ERROR_STATE
#undef RETURN_ABNORMAL_IF_BAD_STATUS
#undef RETURN_ABNORMAL_IF_SCIP_ERROR