-
Notifications
You must be signed in to change notification settings - Fork 229
/
train.py
304 lines (237 loc) · 9.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import argparse
from datetime import datetime
import json
import logging
import os
import random
import numpy as np
import torch
import torch.nn as nn
import torch.utils.data
from lib import dataset
from lib import nets
from lib import spec_utils
def setup_logger(name, logfile='LOGFILENAME.log'):
logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG)
logger.propagate = False
fh = logging.FileHandler(logfile, encoding='utf8')
fh.setLevel(logging.DEBUG)
fh_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
fh.setFormatter(fh_formatter)
sh = logging.StreamHandler()
sh.setLevel(logging.INFO)
logger.addHandler(fh)
logger.addHandler(sh)
return logger
def to_wave(spec, n_fft, hop_length, window):
B, _, N, T = spec.shape
wave = spec.reshape(-1, N, T)
wave = torch.istft(wave, n_fft, hop_length, window=window)
wave = wave.reshape(B, 2, -1)
return wave
def sdr_loss(y, y_pred, eps=1e-8):
sdr = (y * y_pred).sum()
sdr /= torch.linalg.norm(y) * torch.linalg.norm(y_pred) + eps
return -sdr
def weighted_sdr_loss(y, y_pred, n, n_pred, eps=1e-8):
y_sdr = (y * y_pred).sum()
y_sdr /= torch.linalg.norm(y) * torch.linalg.norm(y_pred) + eps
noise_sdr = (n * n_pred).sum()
noise_sdr /= torch.linalg.norm(n) * torch.linalg.norm(n_pred) + eps
a = torch.sum(y ** 2)
a /= torch.sum(y ** 2) + torch.sum(n ** 2) + eps
loss = a * y_sdr + (1 - a) * noise_sdr
return -loss
def train_epoch(dataloader, model, device, optimizer, accumulation_steps):
model.train()
# n_fft = model.n_fft
# hop_length = model.hop_length
# window = torch.hann_window(n_fft).to(device)
sum_loss = 0
crit_l1 = nn.L1Loss()
for itr, (X_batch, y_batch) in enumerate(dataloader):
X_batch = X_batch.to(device)
y_batch = y_batch.to(device)
mask = model(X_batch)
# y_pred = X_batch * mask
# y_wave_batch = to_wave(y_batch, n_fft, hop_length, window)
# y_wave_pred = to_wave(y_pred, n_fft, hop_length, window)
# loss = crit_l1(torch.abs(y_batch), torch.abs(y_pred))
# loss += sdr_loss(y_wave_batch, y_wave_pred) * 0.01
loss = crit_l1(mask * X_batch, y_batch)
accum_loss = loss / accumulation_steps
accum_loss.backward()
if (itr + 1) % accumulation_steps == 0:
optimizer.step()
model.zero_grad()
sum_loss += loss.item() * len(X_batch)
# the rest batch
if (itr + 1) % accumulation_steps != 0:
optimizer.step()
model.zero_grad()
return sum_loss / len(dataloader.dataset)
def validate_epoch(dataloader, model, device):
model.eval()
# n_fft = model.n_fft
# hop_length = model.hop_length
# window = torch.hann_window(n_fft).to(device)
sum_loss = 0
crit_l1 = nn.L1Loss()
with torch.no_grad():
for X_batch, y_batch in dataloader:
X_batch = X_batch.to(device)
y_batch = y_batch.to(device)
y_pred = model.predict(X_batch)
y_batch = spec_utils.crop_center(y_batch, y_pred)
# y_wave_batch = to_wave(y_batch, n_fft, hop_length, window)
# y_wave_pred = to_wave(y_pred, n_fft, hop_length, window)
# loss = crit_l1(torch.abs(y_batch), torch.abs(y_pred))
# loss += sdr_loss(y_wave_batch, y_wave_pred) * 0.01
loss = crit_l1(y_pred, y_batch)
sum_loss += loss.item() * len(X_batch)
return sum_loss / len(dataloader.dataset)
def main():
p = argparse.ArgumentParser()
p.add_argument('--gpu', '-g', type=int, default=-1)
p.add_argument('--seed', '-s', type=int, default=2019)
p.add_argument('--sr', '-r', type=int, default=44100)
p.add_argument('--hop_length', '-H', type=int, default=1024)
p.add_argument('--n_fft', '-f', type=int, default=2048)
p.add_argument('--dataset', '-d', required=True)
p.add_argument('--split_mode', '-S', type=str, choices=['random', 'subdirs'], default='random')
p.add_argument('--learning_rate', '-l', type=float, default=0.001)
p.add_argument('--lr_min', type=float, default=0.0001)
p.add_argument('--lr_decay_factor', type=float, default=0.9)
p.add_argument('--lr_decay_patience', type=int, default=6)
p.add_argument('--batchsize', '-B', type=int, default=4)
p.add_argument('--accumulation_steps', '-A', type=int, default=1)
p.add_argument('--cropsize', '-C', type=int, default=256)
p.add_argument('--patches', '-p', type=int, default=16)
p.add_argument('--val_rate', '-v', type=float, default=0.2)
p.add_argument('--val_filelist', '-V', type=str, default=None)
p.add_argument('--val_batchsize', '-b', type=int, default=4)
p.add_argument('--val_cropsize', '-c', type=int, default=256)
p.add_argument('--num_workers', '-w', type=int, default=4)
p.add_argument('--epoch', '-E', type=int, default=200)
p.add_argument('--reduction_rate', '-R', type=float, default=0.0)
p.add_argument('--reduction_level', '-L', type=float, default=0.2)
p.add_argument('--mixup_rate', '-M', type=float, default=0.0)
p.add_argument('--mixup_alpha', '-a', type=float, default=1.0)
p.add_argument('--pretrained_model', '-P', type=str, default=None)
p.add_argument('--debug', action='store_true')
args = p.parse_args()
logger.debug(vars(args))
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
val_filelist = []
if args.val_filelist is not None:
with open(args.val_filelist, 'r', encoding='utf8') as f:
val_filelist = json.load(f)
train_filelist, val_filelist = dataset.train_val_split(
dataset_dir=args.dataset,
split_mode=args.split_mode,
val_rate=args.val_rate,
val_filelist=val_filelist
)
if args.debug:
logger.info('### DEBUG MODE')
train_filelist = train_filelist[:1]
val_filelist = val_filelist[:1]
elif args.val_filelist is None and args.split_mode == 'random':
with open('val_{}.json'.format(timestamp), 'w', encoding='utf8') as f:
json.dump(val_filelist, f, ensure_ascii=False)
for i, (X_fname, y_fname) in enumerate(val_filelist):
logger.info('{} {} {}'.format(i + 1, os.path.basename(X_fname), os.path.basename(y_fname)))
bins = args.n_fft // 2 + 1
freq_to_bin = 2 * bins / args.sr
unstable_bins = int(200 * freq_to_bin)
stable_bins = int(22050 * freq_to_bin)
reduction_weight = np.concatenate([
np.linspace(0, 1, unstable_bins, dtype=np.float32)[:, None],
np.linspace(1, 0, stable_bins - unstable_bins, dtype=np.float32)[:, None],
np.zeros((bins - stable_bins, 1), dtype=np.float32),
], axis=0) * args.reduction_level
device = torch.device('cpu')
model = nets.CascadedNet(args.n_fft, args.hop_length, 32, 128)
if args.pretrained_model is not None:
model.load_state_dict(torch.load(args.pretrained_model, map_location=device))
if torch.cuda.is_available() and args.gpu >= 0:
device = torch.device('cuda:{}'.format(args.gpu))
model.to(device)
optimizer = torch.optim.Adam(
filter(lambda p: p.requires_grad, model.parameters()),
lr=args.learning_rate
)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
factor=args.lr_decay_factor,
patience=args.lr_decay_patience,
threshold=1e-6,
min_lr=args.lr_min,
verbose=True
)
training_set = dataset.make_training_set(
filelist=train_filelist,
sr=args.sr,
hop_length=args.hop_length,
n_fft=args.n_fft
)
train_dataset = dataset.VocalRemoverTrainingSet(
training_set * args.patches,
cropsize=args.cropsize,
reduction_rate=args.reduction_rate,
reduction_weight=reduction_weight,
mixup_rate=args.mixup_rate,
mixup_alpha=args.mixup_alpha
)
train_dataloader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=args.batchsize,
shuffle=True,
num_workers=args.num_workers
)
patch_list = dataset.make_validation_set(
filelist=val_filelist,
cropsize=args.val_cropsize,
sr=args.sr,
hop_length=args.hop_length,
n_fft=args.n_fft,
offset=model.offset
)
val_dataset = dataset.VocalRemoverValidationSet(
patch_list=patch_list
)
val_dataloader = torch.utils.data.DataLoader(
dataset=val_dataset,
batch_size=args.val_batchsize,
shuffle=False,
num_workers=args.num_workers
)
log = []
best_loss = np.inf
for epoch in range(args.epoch):
logger.info('# epoch {}'.format(epoch))
train_loss = train_epoch(train_dataloader, model, device, optimizer, args.accumulation_steps)
val_loss = validate_epoch(val_dataloader, model, device)
logger.info(
' * training loss = {:.6f}, validation loss = {:.6f}'
.format(train_loss, val_loss)
)
scheduler.step(val_loss)
if val_loss < best_loss:
best_loss = val_loss
logger.info(' * best validation loss')
model_path = 'models/model_iter{}.pth'.format(epoch)
torch.save(model.state_dict(), model_path)
log.append([train_loss, val_loss])
with open('loss_{}.json'.format(timestamp), 'w', encoding='utf8') as f:
json.dump(log, f, ensure_ascii=False)
if __name__ == '__main__':
timestamp = datetime.now().strftime('%Y%m%d%H%M%S')
logger = setup_logger(__name__, 'train_{}.log'.format(timestamp))
try:
main()
except Exception as e:
logger.exception(e)