## Load colleced genotype data for Family 4
fam4.geno <- read.csv("data/fam4.geno.initial.csv", stringsAsFactors = FALSE)
## Check segregation ratios of aa, ab, bb genotypes
seg.types <- rep("<abxcd>", dim(fam4.geno)[2]-1)
for(j in 2:dim(fam4.geno)[2]){
x <- table(unlist( fam4.geno[,j] ), useNA="always")
if( length(x) < 5 ){
print(x)
print(names(fam4.geno)[j])
}
if( names(x)[1]=="aa" ){
seg.types[j-1] <- "<abxab>"
}
}
## these markers should be aa x ab
seg.types[match(c("Stn2", "marker2", "Stn32", "Stn75", "Stn300", "Stn285",
"Stn114", "Stn310", "Stn318", "Stn236", "Stn169", "Stn168",
"Stn233", "Stn291", "Stn178", "Stn188", "Idh", "Stn273"),
names(fam4.geno)[-1])] <- "<aaxab>"
## these markers should be ab x aa
seg.types[match(c("Stn293", "Stn330", "Stn242", "Stn12", "Stn17", "Stn328",
"Stn33", "Stn312", "Stn85", "Stn95", "Stn107", "Stn320",
"Stn134", "Gac1116", "Stn255", "Stn331", "Stn179", "Stn263"),
names(fam4.geno)[-1])] <- "<abxaa>"
## missing ac: Stn271, Stn187, Stn274, Stn192, Stn284, Stn256
## missing bd: Stn313, Stn193 (but only 5 ad)
## missing ac, bc (ab x dd): Stn72, Stn191
seg.types[match(c("Stn72", "Stn191"), names(fam4.geno[-1]))] <- "<abxdd>"
## missing bc (and only 2 ac, maybe ab x dd): Stn104
## missing bc, bd (aa x cd): Stn295, Stn308
seg.types[match(c("Stn295", "Stn308"), names(fam4.geno[-1]))] <- "<aaxcd>"
## missing ad, bd (ab x cc): Stn202, Stn105
seg.types[match(c("Stn202", "Stn105"), names(fam4.geno[-1]))] <- "<abxcc>"
## only 1 ac and 1 bc (maybe ab x dd): Stn186
table(unlist( fam4.geno[,match("Stn186", names(fam4.geno))] ))
## only 1 bc: Stn298
table(unlist( fam4.geno[,match("Stn298", names(fam4.geno))] ))
## only 1 bd (should be ab x ab): EaagMcac1
table(unlist( fam4.geno[,match("EaagMcac1", names(fam4.geno))] ))
fam4.geno$EaagMcac1[ fam4.geno$EaagMcac1 == "bd" ] <- NA
seg.types[match("EaagMcac1", names(fam4.geno[-1]))] <- "<abxab>"
## Remove markers that had high error rates in the linkage map
x <- match(c("Stn114", "Stn286", "Gac2111", "Stn24", "Stn71", "Stn118", "Stn232",
"Stn138", "Stn196", "Stn114", "Stn21", "Stn277"), names(fam4.geno))
fam4.geno <- fam4.geno[, -x]
seg.types <- seg.types[ -(x-1) ]
## Remove markers that have identical positions to other markers
x <- match(c("Stn265", "Hoxc95.", "Hoxc9F2.R2", "Stn152", "Stn267", "Stn176",
"Stn191", "Stn284", "Stn193", "Stn188", "Stn274", "hoxabce1",
"Hoxa10b", "cm488", "marker1", "Stn285", "Stn99", "Stn106",
"Stn225", "Stn278", "Stn139", "Stn142", "Stn295", "cm820.821",
"H9green1pel", "F10blue5.pel", "Stn78", "Stn246", "Stn276",
"Stn155", "Stn7", "Stn321"), names(fam4.geno))
fam4.geno <- fam4.geno[, -x]
seg.types <- seg.types[ -(x-1) ]
## 375 fish, 244 markers
## Stn133 is dropped later during linkage map construction
## Output Family 4 genotypes for building linkage map based on outbred (4-way) data
table(seg.types)
table(unlist(fam4.geno[,-1]), useNA="always")
fam4.geno$Fish <- paste0("4-", fam4.geno$Fish)
fam4.geno[ is.na(fam4.geno) ] <- "--"
write.csv(fam4.geno, "data/fam4.geno.csv", row.names=FALSE)
x <- "linkage_map/tmap_genotypes_fam4_outbred.txt"
write.table("data type outbred", x, col.names=FALSE, row.names=FALSE, quote=FALSE)
write.table(paste(dim(fam4.geno)[1], dim(fam4.geno)[2]-1, collapse=" "), x, append=TRUE, col.names=FALSE,
row.names=FALSE, quote=FALSE)
write.table(cbind(as.vector(names(fam4.geno)[2:dim(fam4.geno)[2]]), seg.types,
t(fam4.geno[,2:dim(fam4.geno)[2]])), x, quote=FALSE, sep="\t",append=TRUE,
col.names=FALSE, row.names=FALSE)
Using tmap and the associated phasing and jtmap programs (Cartwright 2007)
Determine phasing
phasing linkage_map/tmap_genotypes_fam4_outbred.txt linkage_map/tmap_fam4_outbred.phased
Assign markers to groups using the jtmap Grouping interface
jtmap Grouping tmap_fam4_outbred.phased &
Chose max distance 40, min LOD 4
Ignore Stn133 because it doesn’t seem to go with group 11
Saved Stn204, Stn335 as group 22 Saved Stn249, Stn264 as group 23
Save results as linkage_map/tmap_fam4_outbred_*.grp files
Build linkage map using assigned groups
cd linkage_map
for i in $( ls *.grp ); do
tmap -b tmap_fam4_outbred.phased $i > $(basename "$i" .grp).bld
done
Using jtmap MapViewer, flip groups 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 18, 19 to get a more familiar marker order
library(qtl)
## Load Family 4 genotypes and phenotypes
fam4.geno <- read.csv("data/fam4.geno.csv", stringsAsFactors=FALSE)
fam4.pheno <- read.csv("data/fam4.pheno.csv", stringsAsFactors=FALSE)
## Load phased genotypes from tmap output
tmap.phasing <- read.table("linkage_map/tmap_fam4_outbred.phased",
header=FALSE, sep=" ", quote="", skip=2,
comment.char="", stringsAsFactors=FALSE,)
## Make a data frame of the linkage map
files <- sapply(1:23, function(i){
paste0("linkage_map/tmap_fam4_outbred_", formatC(i, width=2, flag="0"),".bld")})
groups <- lapply(files, function(f){
x <- read.table(f, header=TRUE, sep="\t", quote="", stringsAsFactors=FALSE,
row.names=NULL, comment.char="", strip.white=TRUE)
names(x) <- c("marker", "pos", "dist", "error", "informative")
x$informative <- as.factor(x$informative)
x})
tmap.groups <- data.frame(marker=character(0), group=factor(levels=1:length(groups)),
pos=numeric(0), stringsAsFactors=FALSE)
for(i in 1:length(groups)){
tmap.groups <- rbind(tmap.groups,
data.frame(marker=groups[[i]]$marker,
group=factor(i, levels=1:length(groups)),
pos=groups[[i]]$pos, stringsAsFactors=FALSE))}
rm(files,groups)
## Convert tmap phasing codes to R/qtl phased genotypes
p <- strsplit(tmap.phasing[,2],"")
p <- lapply(p, function(x){
as.numeric(sapply(x, function(y){switch(y,
"3"=7, "4"=3, "6"=10,
"7"=14, "8"=4, "a"=6,
"b"=13, "c"=8, "d"=12,
"e"=11, "f"=NA, "-"=NA,
y)},USE.NAMES=FALSE))})
## Make a data frame of the phased genotypes
p <- as.data.frame(t(as.data.frame(p)))
names(p) <- fam4.geno$Fish
rownames(p) <- names(fam4.geno)[-1]
## Select just the subset of markers that are in the linkage map
## and put them in the map order
p <- t( p[match(tmap.groups$marker, rownames(p)),] )
## Format genotype data for R/qtl
tmap.groups$pos <- as.character(tmap.groups$pos)
tmap.groups <- rbind(t(tmap.groups), p)
rm(p)
## Calculate residuals to standard length and/or sex
## Also consider body depth as a model variable
## Choose which model to use based on F statistic
fam4.pheno$Sex <- as.factor(fam4.pheno$Sex)
for(i in 6:10){
p <- fam4.pheno[, c(1:5, i)]
names(p)[6] <- "trait"
m1 <- lm( trait ~ SL, data=p)
m2 <- lm( trait ~ SL + Sex, data=p)
m3 <- lm( trait ~ Sex, data=p)
m4 <- lm( trait ~ BD, data=p)
m5 <- lm( trait ~ BD + SL, data=p)
m6 <- lm( trait ~ BD + SL + Sex, data=p)
m7 <- lm( trait ~ BD + Sex, data=p)
m <- list(m1,m2,m3,m4,m5,m6,m7)
p.val <- as.vector(sapply(m, function(x){
pf(summary(x)$fstatistic["value"],
summary(x)$fstatistic["numdf"],
summary(x)$fstatistic["dendf"],
lower.tail=FALSE)}))
j <- as.integer(which( p.val == min(p.val) ))
if( min(p.val) > 0.01 ){ print("WARNING: P > 0.01"); print(c(i,j)) }
if( length(j) > 1 ){
print("WARNING: TIE FOR BEST MODEL")
print(c(i,j))
j <- j[1]
}
k <- list(!is.na(fam4.pheno[,i]) & !is.na(fam4.pheno$SL),
!is.na(fam4.pheno[,i]) & !is.na(fam4.pheno$SL) & !is.na(fam4.pheno$Sex),
!is.na(fam4.pheno[,i]) & !is.na(fam4.pheno$Sex),
!is.na(fam4.pheno[,i]) & !is.na(fam4.pheno$BD),
!is.na(fam4.pheno[,i]) & !is.na(fam4.pheno$BD) & !is.na(fam4.pheno$SL),
!is.na(fam4.pheno[,i]) & !is.na(fam4.pheno$BD) & !is.na(fam4.pheno$SL) & !is.na(fam4.pheno$Sex),
!is.na(fam4.pheno[,i]) & !is.na(fam4.pheno$BD) & !is.na(fam4.pheno$Sex))
fam4.pheno[k[[j]],paste0(names(fam4.pheno)[i],"_rsd",j)] <- residuals(m[[j]])
}
## Spine 1 and Spine 2 use model 1 (standard length)
## Spine 3 and Anal Spine use model 2 (standard length and sex)
## Spine 1 (with zeros included for missing spines) uses model 2
## Combine phenotypes with genotypes for cross file
p <- fam4.pheno[match(rownames(tmap.groups), fam4.pheno$Fish, nomatch=NULL), c(2:length(fam4.pheno))]
lapply(p, is.factor) # which traits are specified as factors? only sex
p$Sex <- as.character(p$Sex) # convert to character for the purposes of writing the file
p[1,] <- names(p)
p[2:3,] <- ""
## Phenotype data should use the same NA strings as in read.cross
sum( p[4:dim(p)[1],]=="", na.rm=TRUE) # check that there aren't any "empty string" missing values
sum( is.na(p[4:dim(p)[1],])) # how many NAs?
table(which(p == 0, arr.ind=TRUE)[,"col"]) # which columns contain 0 values? 15 in Spine_1_w_0 column
names(p)[as.numeric(names(table(which(p == 0, arr.ind=TRUE)[,"col"])))] # show the names of those columns
## Combine phenotype and phased genotype data
tmap.groups <- cbind(p, tmap.groups, stringsAsFactors=FALSE)
## Write cross file and read it with R/qtl
write.table(tmap.groups, "data/cross_fam4.csv", col.names=FALSE, row.names=FALSE, sep=",", quote=FALSE)
cross <- read.cross(format="csv", file="data/cross_fam4.csv", estimate.map=FALSE, genotypes=NULL)
cross <- jittermap(cross) # jittermap needed because some markers have identical position
cross <- calc.genoprob(cross, step=0, error.prob=0.0001, map.function="kosambi") # tmap uses kosambi
summary(cross)
## Select phenotypes to analyze
p <- 3:14 # all phenotypes (raw and residuals)
cross$pheno$sex.numeric <- as.numeric(cross$pheno$Sex) - 1
cross$pheno$Spine_1_present <- as.numeric( !(cross$pheno$Spine_1_w_0 == 0) )
p.bin <- 15:16 # binary phenotypes (sex and spine 1 presence/absence)
p.2p <- 6 # 2-part phenotypes (Spine 1 with zeros for missing)
## Run scanone using hk for normal traits and em for binary traits
np <- 10000 # number of permutations for permutation test
nc <- 8 # number of cores to use (make sure np divisible by nc)
out.hk <- scanone(cross, pheno.col=p, model="normal", method="hk")
out.bin <- scanone(cross, pheno.col=p.bin, model="binary", method="em")
out.2p <- scanone(cross, pheno.col=p.2p, model="2part", method="em")
load("data/scanone.permutations.RData") # load precalculated scanone permutations
## Uncomment here to re-rerun the scanone permutations
#perm.hk <- scanone(cross, pheno.col=p, model="normal", method="hk",
# n.perm=np, n.cluster=nc)
#perm.bin <- scanone(cross, pheno.col=p.bin, model="binary", method="em",
# n.perm=np, n.cluster=nc)
#perm.2p <- scanone(cross, pheno.col=p.2p, model="2part", method="em",
# n.perm=np, n.cluster=nc)
## Generate simple plots of all scanone results
for(i in seq_along(p)){
png(paste0("plots/qtl_normal_hk_",formatC(p[i], width=2, flag="0"),".png"), 1200, 400)
plot(out.hk, lodcolumn=i)
add.threshold(out.hk, perms=perm.hk, alpha=0.05, lodcolumn=i, lty=4)
dev.off()
}
for(i in seq_along(p.bin)){
png(paste0("plots/qtl_binary_",formatC(p.bin[i], width=2, flag="0"),".png"), 1200, 400)
plot(out.bin, lodcolumn=i)
add.threshold(out.bin, perms=perm.bin, alpha=0.05, lodcolumn=i, lty=4)
dev.off()
}
png(paste0("plots/qtl_2part_",formatC(p.2p, width=2, flag="0"),".png"), 1200, 400)
plot(out.2p, lodcolumn=1:3, ylab="LOD score")
add.threshold(out.2p, perms=perm.2p, alpha=0.05, lodcolumn=1, lty=4)
dev.off()
## Display scanone results for spine length residuals
## Summarize LOD scores that pass permutation-based threshold
## Calculate PVE values corresponding to top LOD score
i <- match(c("Spine_1_rsd1","Spine_2_rsd1","Spine_3_rsd2","Anal_Spine_rsd2"), names(cross$pheno)[p])
summary(out.hk, perms=perm.hk, alpha=.05, lodcolumn=i[1])[,c(1:2,i[1]+2)]
sum(!is.na(cross$pheno$Spine_1_rsd1))
print(1-10^(-2/360 * 25.97)) # 28.3% PVE Stn47
summary(out.hk, perms=perm.hk, alpha=.05, lodcolumn=i[2])[,c(1:2,i[2]+2)]
sum(!is.na(cross$pheno$Spine_2_rsd1))
print(1-10^(-2/372 * 30.45)) # 31.4% PVE Stn45
summary(out.hk, perms=perm.hk, alpha=.05, lodcolumn=i[3])[,c(1:2,i[3]+2)]
sum(!is.na(cross$pheno$Spine_3_rsd2))
print(1-10^(-2/368 * 15.64)) # 17.8% PVE Stn45
summary(out.hk, perms=perm.hk, alpha=.05, lodcolumn=i[4])[,c(1:2,i[4]+2)]
sum(!is.na(cross$pheno$Anal_Spine_rsd2))
print(1-10^(-2/334 * 16.79)) # 20.7% PVE Stn292
summary(out.hk, perms=perm.hk, alpha=.05, format="tabByCol", pvalues=TRUE)
## Plot scanone results on chromosome 4
#plot(out.hk, lodcolumn=i[2], chr=4, show.marker.names=TRUE, col="red", ylab="LOD")
plot(out.hk, lodcolumn=i[2], chr=4, col="red", ylab="LOD")
plot(out.hk, lodcolumn=i[1], chr=4, col="blue", add=TRUE)
plot(out.hk, lodcolumn=i[3], chr=4, col="green", add=TRUE)
plot(out.hk, lodcolumn=i[4], chr=4, col="orange", add=TRUE)
add.threshold(out.hk, perms=perm.hk, alpha=0.05, lodcolumn=i[1], lty=4)
legend(8, 26, c("DS1", "DS2", "DS3", "AS"), fill=c("blue","red","green","orange"), bty="n")
## Plot scanone results across entire genome
## (linkage groups 1 through 21)
pdf("plots/spine_qtl_plot.pdf", width=8, height=3.5)
pcolors <- c("royalblue","indianred2","darkseagreen","gold2")
par.old <- par(mar=c(4,4,1.8,1), mgp=c(2.4,.8,0))
plot(out.hk, lodcolumn=i[2], chr=1:21, col=pcolors[2], ylab="LOD", alternate.chrid=TRUE, bty="l")
plot(out.hk, lodcolumn=i[1], chr=1:21, col=pcolors[1], add=TRUE)
plot(out.hk, lodcolumn=i[3], chr=1:21, col=pcolors[3], add=TRUE)
plot(out.hk, lodcolumn=i[4], chr=1:21, col=pcolors[4], add=TRUE)
add.threshold(out.hk, perms=perm.hk, alpha=0.05, lodcolumn=i[1], lty=4)
legend(40, 26, c("DS1", "DS2", "DS3", "AS"), fill=pcolors, bty="n")
par(par.old)
dev.off()
## Run scantwo on selected phenotypes
np <- 10000 # 10000 perms took 6.5 hours on 40 cores; 1000 perms may be adequate
nc <- 40
i <- match(c("Spine_1_rsd1","Spine_2_rsd1","Spine_3_rsd2","Anal_Spine_rsd2"), names(cross$pheno)[p])
out2.hk <- scantwo(cross, pheno.col=p[i], model="normal", method="hk")
load("data/scantwo.permutations.RData") # load precalculated scantwo permutations
## Uncomment here to re-run the scantwo permutations
#perm2.hk <- scantwo(cross, pheno.col=p[i], model="normal", method="hk",
# n.perm=np, n.cluster=nc)
## Determine penalties for stepwise analysis
pen <- calc.penalties(perm2.hk, alpha=.05)
pen.avg <- apply(pen, 2, mean)
## Stepwise model selection
j <- match(c("Spine_1_rsd1","Spine_2_rsd1","Spine_3_rsd2","Anal_Spine_rsd2"), names(cross$pheno)[p])
for(i in 1:length(j)){
stepout.a <- stepwiseqtl(cross, additive.only=TRUE, max.qtl=10, method="hk",
pheno.col=p[j[i]], penalties=pen[i,])
if(i==1){stp.1 <- stepout.a}
if(i==2){stp.2 <- stepout.a}
if(i==3){stp.3 <- stepout.a}
if(i==4){stp.4 <- stepout.a}
print(names(cross$pheno)[p[j[i]]])
print(stepout.a)
print(summary(fitqtl(cross, pheno.col=p[j[i]], qtl=stepout.a, method="hk")))
## No interactions were retained during model selection
#stepout.i <- stepwiseqtl(cross, max.qtl=10, method="hk",
# pheno.col=p[j[i]], penalties=pen[i,])
#print(stepout.i)
#print(summary(fitqtl(cross, pheno.col=p[j[i]], qtl=stepout.i, method="hk",
# formula=attributes(stepout.i)$formula)))
}
## Saved model selection output to data/stepwise_model_selection_output.txt
## Use effectplot to get phenotype means for each genotype
cross <- sim.geno(cross, n.draws=64, map.function="kosambi")
find.marker(cross, chr=4, pos=61.4)
find.marker(cross, chr=7, pos=85.8)
find.marker(cross, chr=16, pos=13.5)
print(effectplot(cross, pheno.col=p[j[1]], mname1="Stn47"))
print(effectplot(cross, pheno.col=p[j[1]], mname1="Stn82"))
print(effectplot(cross, pheno.col=p[j[1]], mname1="Stn175"))
find.marker(cross, chr=4, pos=55.3)
find.marker(cross, chr=8, pos=42)
find.marker(cross, chr=9, pos=8.7)
find.marker(cross, chr=16, pos=13.5)
print(effectplot(cross, pheno.col=p[j[2]], mname1="Stn45"))
print(effectplot(cross, pheno.col=p[j[2]], mname1="Stn87"))
print(effectplot(cross, pheno.col=p[j[2]], mname1="Stn108"))
print(effectplot(cross, pheno.col=p[j[2]], mname1="Stn175"))
find.marker(cross, chr=4, pos=55.0)
find.marker(cross, chr=13, pos=4.8)
find.marker(cross, chr=21, pos=0)
print(effectplot(cross, pheno.col=p[j[3]], mname1="Gac4174"))
print(effectplot(cross, pheno.col=p[j[3]], mname1="Stn149"))
print(effectplot(cross, pheno.col=p[j[3]], mname1="Stn218"))
find.marker(cross, chr=4, pos=63.5)
find.marker(cross, chr=17, pos=45.8)
find.marker(cross, chr=20, pos=0)
print(effectplot(cross, pheno.col=p[j[4]], mname1="Stn292"))
print(effectplot(cross, pheno.col=p[j[4]], mname1="Stn273"))
print(effectplot(cross, pheno.col=p[j[4]], mname1="Stn213"))
## Build a table of phenotype means per genotype at QTL
ptable <- effectplot(cross, pheno.col=p[j[1]], mname1="Stn47")$Means
ptable <- as.data.frame(t(ptable))
names(ptable) <- c("M2F1","M1M2","F1F2","M1F2")
ptable <- ptable[,c("M1M2","M2F1","M1F2","F1F2")]
tmp <- effectplot(cross, pheno.col=p[j[1]], mname1="Stn82")$Means
ptable <- rbind( ptable, tmp[c(3,4,1,2)] )
tmp <- effectplot(cross, pheno.col=p[j[1]], mname1="Stn175")$Means
ptable <- rbind( ptable, tmp )
tmp <- effectplot(cross, pheno.col=p[j[2]], mname1="Stn45")$Means
ptable <- rbind( ptable, tmp[c(2,1,4,3)] )
tmp <- effectplot(cross, pheno.col=p[j[2]], mname1="Stn87")$Means
ptable <- rbind( ptable, tmp[c(3,4,1,2)] )
tmp <- effectplot(cross, pheno.col=p[j[2]], mname1="Stn108")$Means
ptable <- rbind( ptable, tmp )
tmp <- effectplot(cross, pheno.col=p[j[2]], mname1="Stn175")$Means
ptable <- rbind( ptable, tmp )
tmp <- effectplot(cross, pheno.col=p[j[3]], mname1="Gac4174")$Means
ptable <- rbind( ptable, tmp[c(2,1,4,3)] )
tmp <- effectplot(cross, pheno.col=p[j[3]], mname1="Stn149")$Means
ptable <- rbind( ptable, tmp[c(4,3,2,1)] )
tmp <- effectplot(cross, pheno.col=p[j[3]], mname1="Stn218")$Means
ptable <- rbind( ptable, tmp[c(3,4,1,2)] )
tmp <- effectplot(cross, pheno.col=p[j[4]], mname1="Stn292")$Means
ptable <- rbind( ptable, tmp[c(2,1,4,3)] )
tmp <- effectplot(cross, pheno.col=p[j[4]], mname1="Stn273")$Means
ptable <- rbind( ptable, tmp[c(3,4,1,2)] )
tmp <- effectplot(cross, pheno.col=p[j[4]], mname1="Stn213")$Means
ptable <- rbind( ptable, tmp )
## LOD scores for dropping one QTL at a time from each model
qtable1 <- summary(fitqtl(cross, pheno.col=p[j[1]], qtl=stp.1, method="hk"))$result.drop[,]
qtable2 <- summary(fitqtl(cross, pheno.col=p[j[2]], qtl=stp.2, method="hk"))$result.drop[,]
qtable3 <- summary(fitqtl(cross, pheno.col=p[j[3]], qtl=stp.3, method="hk"))$result.drop[,]
qtable4 <- summary(fitqtl(cross, pheno.col=p[j[4]], qtl=stp.4, method="hk"))$result.drop[,]
qtable1 <- as.data.frame(qtable1)
qtable2 <- as.data.frame(qtable2)
qtable3 <- as.data.frame(qtable3)
qtable4 <- as.data.frame(qtable4)
## Combine phenotype means, LOD scores and PVE into a table
markers <- c("Stn47","Stn82","Stn175","Stn45","Stn87","Stn108","Stn175","Gac4174","Stn149",
"Stn218","Stn292", "Stn273", "Stn213")
etable <- data.frame(Trait=c(rep("DS1",3),rep("DS2",4),rep("DS3",3),rep("AS",3)),
Chromosome=c(4, 7, 16, 4, 8, 9, 16, 4, 13, 21, 4, 17, 20),
Position=c(floor(stp.1$pos*10)/10,floor(stp.2$pos*10)/10,
floor(stp.3$pos*10)/10,floor(stp.4$pos*10)/10),
Marker=markers, LOD=c(qtable1$LOD,qtable2$LOD,qtable3$LOD,qtable4$LOD),
PVE=c(qtable1[,"%var"],qtable2[,"%var"],qtable3[,"%var"],qtable4[,"%var"]))
ptable <- cbind(etable, ptable)
print(ptable)
## Generate LaTeX table
library(xtable)
print(xtable(ptable, rownames=FALSE), include.rownames=FALSE)
QTL analysis - fine mapping on chromosome 4 as a combined F2 cross
Use simplified marine/freshwater genotypes to combine information across families, and treat it as a single F2 intercross.
Include family of origin along with Standard Length and Sex in the choices for phenotype models to calculate residuals.
## Load Spine 1 and Spine 2 phenotypes from multiple families
pheno <- read.csv("data/fine_mapping_phenotypes.csv", stringsAsFactors=FALSE)
## Load genotype data for fine mapping region
## Coded as A, B, H for marine, freshwater, heterozygous genotypes
geno <- read.csv("data/fine_mapping_genotypes.csv", stringsAsFactors=FALSE)
## Remove redundant, uninformative markers from genotypes
geno <- geno[, -match(c("mem141","mem140","mem007","mem139","mem228","mem229",
"mem238","mem241","mem296","mem297","BRSm019"), names(geno))]
## Combine genotype and phenotype data
geno <- cbind(geno[,"Fish"], pheno[,"Family"], pheno[,3:8], geno[,2:dim(geno)[2]], stringsAsFactors=FALSE)
names(geno)[1:2] <- c("Fish", "Family")
## Write cross file in F2 intercross format for R/qtl
## Replace, A,H,B genotypes with 1,2,3
x <- geno[ , 9:dim(geno)[2] ]
x[ x == "-" ] <- NA
x[ x == "A" ] <- 1
x[ x == "H" ] <- 2
x[ x == "B" ] <- 3
geno[ , 9:dim(geno)[2] ] <- x
x <- rbind( names(geno), c(rep("",8), rep("4", dim(x)[2])), geno, stringsAsFactors=FALSE)
write.table(x, "data/cross_fm.csv", col.names=FALSE, row.names=FALSE, sep=",", quote=FALSE)
## Read cross as F2 intercross in R/qtl
library(qtl)
## est.map uses Lander-Green algorithm with Haldane map function by default
cross.fm <- read.cross(format="csv", file="data/cross_fm.csv", estimate.map=TRUE, genotypes=NULL)
cross.fm <- calc.genoprob(cross.fm, step=0, error.prob=0.0001)
cross.fm$pheno$Fish <- as.character(cross.fm$pheno$Fish)
cross.fm$pheno$Family <- as.factor(cross.fm$pheno$Family)
sapply(cross.fm$pheno, class)
summary(cross.fm)
## Calculate residuals to standard length and/or sex
## Also consider family as a variable
## Store all the residuals resultning from all models
for(i in c(6:8)){
p <- cross.fm$pheno[, c(1:5, i)]
names(p)[6] <- "trait"
m1 <- lm( trait ~ SL, data=p)
m2 <- lm( trait ~ SL + Sex, data=p)
m3 <- lm( trait ~ Sex, data=p)
m4 <- lm( trait ~ Family, data=p)
m5 <- lm( trait ~ Family + SL, data=p)
m6 <- lm( trait ~ Family + SL + Sex, data=p)
m7 <- lm( trait ~ Family + Sex, data=p)
m <- list(m1,m2,m3,m4,m5,m6,m7)
p.val <- as.vector(sapply(m, function(x){
pf(summary(x)$fstatistic["value"],
summary(x)$fstatistic["numdf"],
summary(x)$fstatistic["dendf"],
lower.tail=FALSE)}))
print(p.val)
j <- as.integer(which( p.val == min(p.val) ))
if( min(p.val) > 0.01 ){ print("WARNING: P > 0.01"); print(c(i,j)) }
if( length(j) > 1 ){
print("WARNING: TIE FOR BEST MODEL")
print(c(i,j))
j <- j[1]
}
k <- list(!is.na(cross.fm$pheno[,i]) & !is.na(cross.fm$pheno$SL),
!is.na(cross.fm$pheno[,i]) & !is.na(cross.fm$pheno$SL) & !is.na(cross.fm$pheno$Sex),
!is.na(cross.fm$pheno[,i]) & !is.na(cross.fm$pheno$Sex),
!is.na(cross.fm$pheno[,i]) & !is.na(cross.fm$pheno$Family),
!is.na(cross.fm$pheno[,i]) & !is.na(cross.fm$pheno$Family) & !is.na(cross.fm$pheno$SL),
!is.na(cross.fm$pheno[,i]) & !is.na(cross.fm$pheno$Family) & !is.na(cross.fm$pheno$SL) & !is.na(cross.fm$pheno$Sex),
!is.na(cross.fm$pheno[,i]) & !is.na(cross.fm$pheno$Family) & !is.na(cross.fm$pheno$Sex))
for(j in 1:7){cross.fm$pheno[k[[j]],paste0(names(cross.fm$pheno)[i],"_rsd",j)] <- residuals(m[[j]])}
}
## Also consider binary presence/absence phenotypes
cross.fm$pheno$Spine1.present <- as.numeric(!is.na(cross.fm$pheno$Spine_1))
cross.fm$pheno$Spine2.present <- as.numeric(!is.na(cross.fm$pheno$Spine_2))
cross.fm$pheno$Spine1.present[ is.na(cross.fm$pheno$Spine_1) & is.na(cross.fm$pheno$Spine_2) ] <- NA
cross.fm$pheno$Spine2.present[ is.na(cross.fm$pheno$Spine_1) & is.na(cross.fm$pheno$Spine_2) ] <- NA
## Select phenotypes to analyze
## (focus on Spine 1 and Spine 2, residuals to standard length)
p <- match(c("Spine_1", "Spine_2", "Spine_1_rsd1", "Spine_2_rsd1"), names(cross.fm$pheno))
#cross.fm$pheno$sex.numeric <- as.numeric(cross.fm$pheno$Sex) - 1
#p.bin <- 30:32
#p.2p <- 7
## Run scanone using hk,em for normal traits and em for binary traits
np <- 10000 # number of permutations for permutation test
nc <- 8 # number of cores to use (make sure np divisible by nc)
fine.hk <- scanone(cross.fm, pheno.col=p, model="normal", method="hk")
fine.em <- scanone(cross.fm, pheno.col=p, model="normal", method="em")
## load precalculated fine.perm.hk and fine.perm.em permutations
load("data/fine_mapping.scanone.permutations.RData")
## uncommment to re-run
#fine.perm.hk <- scanone(cross.fm, pheno.col=p, model="normal", method="hk",
# n.perm=np, n.cluster=nc)
#fine.perm.em <- scanone(cross.fm, pheno.col=p, model="normal", method="em",
# n.perm=np, n.cluster=nc)
## uncomment if running additional binary or 2part traits
#fine.bin.em <- scanone(cross.fm, pheno.col=p.bin, model="binary", method="em")
#fine.2p.em <- scanone(cross.fm, pheno.col=p.2p, model="2part", method="em")
#fine.perm.bin.em <- scanone(cross.fm, pheno.col=p.bin, model="binary", method="em",
# n.perm=np, n.cluster=nc)
#fine.perm.2p.em <- scanone(cross.fm, pheno.col=p.bin, model="2part", method="em",
# n.perm=np, n.cluster=nc)
## Generate plots of scanone results
for(i in seq_along(p)){
png(paste0("plots/fine_mapping_normal_hk_",formatC(p[i], width=2, flag="0"),".png"), 1200, 400)
plot(fine.hk, lodcolumn=i)
add.threshold(fine.hk, perms=fine.perm.hk, alpha=0.05, lodcolumn=i, lty=4)
dev.off()
}
for(i in seq_along(p)){
png(paste0("plots/fine_mapping_normal_em_",formatC(p[i], width=2, flag="0"),".png"), 1200, 400)
plot(fine.em, lodcolumn=i)
#plot(fine.em, lodcolumn=i, ylim=c(40,80), xlim=c(7,15))
add.threshold(fine.em, perms=fine.perm.em, alpha=0.05, lodcolumn=i, lty=4)
dev.off()
}
## Display scanone results
i <- match(c("Spine_1_rsd1","Spine_2_rsd1"), names(cross.fm$pheno)[p])
summary(fine.hk, perms=fine.perm.hk, alpha=.05, lodcolumn=i[1])[,c(1:2,i+2)]
summary(fine.hk, perms=fine.perm.hk, alpha=.05, lodcolumn=i[2])[,c(1:2,i+2)]
summary(fine.hk, perms=fine.perm.hk, format="tabByCol", pvalues=TRUE,
ci.function="lodint", drop=1)
## 1-LOD intervals from QTL peak
lodint(fine.hk, chr=4, drop=1, lodcolumn=i[1]) # mem006 to mem253
sum(!is.na(cross.fm$pheno$Spine_1_rsd1))
print(1-10^(-2/912 * 61.34)) # 26.6% PVE
lodint(fine.hk, chr=4, drop=1, lodcolumn=i[2]) # mem006 to mem253
sum(!is.na(cross.fm$pheno$Spine_2_rsd1))
print(1-10^(-2/936 * 73.16)) # 30.2% PVE
## Bayesian credible interval, prob=0.95
bayesint(fine.hk, chr=4, lodcolumn=i[1]) # Stn365 to mem244
bayesint(fine.hk, chr=4, lodcolumn=i[2]) # Stn365 to mem244
## Generate plot of LOD scores for Spine 1 and Spine 2 residuals
pdf("plots/fine_mapping_lod_plot.pdf", family="Helvetica", width=8, height=3.5)
pcolors <- c("royalblue","indianred2","darkseagreen","gold2")
par.old <- par(mar=c(4,4,1.8,1), mgp=c(2.4,.8,0))
plot(fine.hk, lodcolumn=i[2], col=pcolors[2], ylab="LOD", ylim=c(35,75), bty="l",
xlab="", incl.markers=FALSE)
#xlab=paste0("Map position (cM)", paste(rep(" ", 50), collapse="")))
rug(unlist(pull.map(cross.fm), use.names=FALSE), 0.06, lwd=1.5, quiet=TRUE)
plot(fine.hk, lodcolumn=i[1], col=pcolors[1], add=TRUE)
add.threshold(fine.hk, perms=fine.perm.hk, alpha=0.05, lodcolumn=i[1], lty=4)
legend(-.1, 70, c("DS1", "DS2"), fill=pcolors, bty="n")
par(par.old)
dev.off()
## 2002 individuals, 37 markers
dim(cross.fm$geno[[1]]$data)
## Genotypes per marker
apply(cross.fm$geno[[1]]$data, 2, function(x){ sum(!is.na(x))})
## Individuals per family
table(cross.fm$pheno$Family)
## Run scantwo on selected phenotypes
np <- 10000 # number of permutations for permutation test
nc <- 8 # number of cores to use (make sure np divisible by nc)
j <- match(c("Spine_1_rsd1","Spine_2_rsd1"), names(cross.fm$pheno)[p])
fine2.hk <- scantwo(cross.fm, pheno.col=p[j], model="normal", method="hk")
load("data/fine_mapping.scantwo.permutations.RData") # load precalculated permutations
## Uncomment to re-run permutations
#fine2.perm.hk <- scantwo(cross.fm, pheno.col=p[j], model="normal", method="hk",
# n.perm=np, n.cluster=nc)
summary(fine2.perm.hk)
plot(fine2.perm.hk, lodcolumn=1)
plot(fine2.perm.hk, lodcolumn=2)
summary(fine2.hk, perms=fine2.perm.hk, alphas=.05, lodcolumn=1, pvalues=TRUE)
summary(fine2.hk, perms=fine2.perm.hk, alphas=.05, lodcolumn=2, pvalues=TRUE)
## For spine 1, an additive model combining mem235 and BRSm018 is supported
find.marker(cross.fm, chr=4, pos=9.3)
find.marker(cross.fm, chr=4, pos=13.2)
pen <- calc.penalties(fine2.perm.hk, alpha=.05)
pen.avg <- apply(pen, 2, mean)
## Stepwise model selection
for(i in 1:length(j)){
stp.a <- stepwiseqtl(cross.fm, additive.only=TRUE, max.qtl=2, method="hk",
pheno.col=p[j[i]], penalties=pen[i,])
if(i==1){ stp.fm.1 <- stp.a }
if(i==2){ stp.fm.2 <- stp.a }
print(names(cross.fm$pheno)[p[j[i]]])
print(stp.a)
print(summary(fitqtl(cross.fm, pheno.col=p[j[i]], qtl=stp.a, method="hk")))
#stp.i <- stepwiseqtl(cross.fm, max.qtl=2, method="hk",
# pheno.col=p[j[i]], penalties=pen[i,])
#print(stp.i)
#print(summary(fitqtl(cross.fm, pheno.col=p[j[i]], qtl=stp.i, method="hk",
# formula=attributes(stp.i)$formula)))
}
## Again, an additive model combining mem235 and BRSm018 is chosen for spine 1
## Results save as data/fine_mapping_stepwise_model_selection_output.txt
## Phenotype effects
cross.fm <- sim.geno(cross.fm, n.draws=64)
print(effectplot(cross.fm, pheno.col=p[j[1]], mname1="mem235"))
print(effectplot(cross.fm, pheno.col=p[j[2]], mname1="mem235"))
ptable <- effectplot(cross.fm, pheno.col=p[j[1]], mname1="mem235")$Means
ptable <- as.data.frame(t(ptable))
ptable <- rbind(ptable, effectplot(cross.fm, pheno.col=p[j[1]], mname1="BRSm018")$Means)
ptable <- rbind(ptable, effectplot(cross.fm, pheno.col=p[j[2]], mname1="mem235")$Means)
qtable1 <- summary(fitqtl(cross.fm, pheno.col=p[j[1]], qtl=stp.fm.1, method="hk"))$result.drop[,]
qtable2 <- summary(fitqtl(cross.fm, pheno.col=p[j[2]], qtl=stp.fm.2, method="hk"))$result.full
qtable1 <- as.data.frame(qtable1)
qtable2 <- as.data.frame(qtable2)
find.marker(cross.fm, chr=4, pos=13.2)
etable <- data.frame(Trait=c("DS1","DS1","DS2"), Position=c("9.3 cM","13.2 cM","9.3 cM"),
Marker=c("mem235","BRSm018","mem235"), LOD=c(qtable1$LOD,qtable2$LOD[1]),
PVE=c(qtable1[,"%var"],qtable2[1,"%var"]))
ptable <- cbind(etable, ptable)
print(ptable)
## Generate LaTeX table
library(xtable)
print(xtable(ptable, rownames=FALSE), include.rownames=FALSE)
## LOD intervals
lodint(stp.fm.1, 4, qtl.index=1, drop=1)
lodint(stp.fm.1, 4, qtl.index=1, drop=.001)
bayesint(stp.fm.1, 4, qtl.index=1, prob=.9)
lodint(stp.fm.1, 4, qtl.index=2, drop=1)
lodint(stp.fm.1, 4, qtl.index=2, drop=.001)
bayesint(stp.fm.1, 4, qtl.index=2, prob=.9)
lodint(stp.fm.2, 4, drop=1)
lodint(stp.fm.2, 4, drop=.001)
bayesint(stp.fm.2, 4, prob=.9)