Skip to content

Latest commit

 

History

History
65 lines (49 loc) · 4.51 KB

reference.md

File metadata and controls

65 lines (49 loc) · 4.51 KB

References

We provide a list of references to the literature related to tensor cross interpolation and quantics tensor networks.

Please feel to contact us if you would like to add a relevant paper to this list or make a pull request here.

  • Learning low-rank tensor train representations: new algorithms and libraries
    Yuriel Núñez Fernández, Marc K. Ritter, Matthieu Jeannin, Jheng-Wei Li, Thomas Kloss, Thibaud Louvet, Satoshi Terasaki, Olivier Parcollet, Jan von Delft, Hiroshi Shinaoka, and Xavier Waintal
    arXiv:2407.02454
    This paper provides a pedagogical introduction to tensor network methods, which includes an overview of the existing literature and also new algorithm.

  • Learning parameter dependence for Fourier-based option pricing with tensor trains
    Rihito Sakurai, Haruto Takahashi, Koichi Miyamoto
    arXiv:2405.00701
    This paper discusses applications of Tensor Cross Interpolation (TCI) to financial problems, such as Fourier-based option pricing.

  • Learning tensor trains from noisy functions with application to quantum simulation
    Kohtaroh Sakaue, Hiroshi Shinaoka, Rihito Sakurai
    arXiv:2405.12730
    TCI-based approaches for learning tensor trains from noisy functions, with applications to quantum simulation.

  • Low-rank quantics tensor train representations of Feynman diagrams for multiorbital electron-phonon models
    Hirone Ishida, Natsuki Okada, Shintaro Hoshino, Hiroshi Shinaoka
    arXiv:2405.06440
    Applications of Quantics Tensor Cross Interpolaiton (QTCI) to multiorbital electron-phonon impurity models.

  • Compactness of quantics tensor train representations of local imaginary-time propagators Haruto Takahashi, Rihito Sakurai, Hiroshi Shinaoka
    arXiv:2403.09161
    Numerical invetigation of compactness of QTT representations of local imaginary-time propagators, showing the saturation of the bond dimension at low temperature.

  • Multiscale interpolative construction of quantized tensor trains
    Michael Lindsey
    arXiv:2311.12554
    This paper introduces a multiscale polynomial interpolation method for constructing qunatics/quantized tensor trains.

  • A Tensor Train Continuous Time Solver for Quantum Impurity Models
    A. Erpenbeck, W.-T. Lin, T. Blommel, L. Zhang, S. Iskakov, L. Bernheimer, Y. Núñez-Fernández, G. Cohen, O. Parcollet, X. Waintal, E. Gull
    Phys. Rev. B 107, 245135 (2023)
    arXiv:2303.11199
    Applications of TCI to the single-impurity Anderson model at equilibrium by calculating the systematic expansion in power of the hybridization of the impurity with the bath.

  • Quantics Tensor Cross Interpolation for High-Resolution Parsimonious Representations of Multivariate Functions
    Marc K. Ritter, Yuriel Núñez Fernández, Markus Wallerberger, Jan von Delft, Hiroshi Shinaoka, and Xavier Waintal
    Phys. Rev. Lett. 132, 056501 (2024)
    arXiv:2303.11819
    This paper introduces quantics tensor cross interpolation (QTCI) for high-resolution parsimonious representations of multivariate functions.

  • Multiscale Space-Time Ansatz for Correlation Functions of Quantum Systems Based on Quantics Tensor Trains
    Hiroshi Shinaoka, Markus Wallerberger, Yuta Murakami, Kosuke Nogaki, Rihito Sakurai, Philipp Werner, and Anna Kauch
    Phys. Rev. X 13, 021015 (2023)
    This paper discusses compressing correlation functions of quantum systems using quantics tensor trains on a multiscale space-time ansatz.

  • Quantum Fourier Transform Has Small Entanglement
    Jielun Chen, E.M. Stoudenmire, Steven R. White
    PRX Quantum 4, 040318 (2023)
    This paper reveals the low-entanglement structure of the quantum Fourier transform.

  • Learning Feynman Diagrams with Tensor Trains
    Yuriel Núñez Fernández, Matthieu Jeannin, Philipp T. Dumitrescu, Thomas Kloss, Jason Kaye, Olivier Parcollet, and Xavier Waintal
    Phys. Rev. X 12, 041018 (2022)
    This paper introduces Tensor Cross Interpolation (TCI) for learning Feynman diagrams.