-
Notifications
You must be signed in to change notification settings - Fork 3
/
effectiveFisher.py
735 lines (665 loc) · 24.2 KB
/
effectiveFisher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
# Copyright (C) 2013 Evan Ochsner
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
Module of routines to compute an effective Fisher matrix and related utilities,
such as finding a region of interest and laying out a grid over it
"""
from lalinference.rapid_pe import lalsimutils as lsu
import numpy as np
from scipy.optimize import leastsq, brentq
from scipy.linalg import eig, inv
__author__ = "Evan Ochsner <[email protected]>"
### This is the original effective Fisher ###
# def effectiveFisher(residual_func, *flat_grids):
# """
# Fit a quadratic to the ambiguity function tabulated on a grid.
# Inputs:
# - a pointer to a function to compute residuals, e.g.
# z(x1, ..., xN) - fit
# for N-dimensions, this is called 'residualsNd'
# - N+1 flat arrays of length K. N arrays for each on N parameters,
# plus 1 array of values of the overlap
# Returns:
# - flat array of upper-triangular elements of the effective Fisher matrix
#
# Example:
# x1s = [x1_1, ..., x1_K]
# x2s = [x2_1, ..., x2_K]
# ...
# xNs = [xN_1, ..., xN_K]
#
# gamma = effectiveFisher(residualsNd, x1s, x2s, ..., xNs, rhos)
# gamma
# [g_11, g_12, ..., g_1N, g_22, ..., g_2N, g_33, ..., g_3N, ..., g_NN]
# """
# x0 = np.ones(len(flat_grids))
# fitgamma = leastsq(residual_func, x0=x0, args=tuple(flat_grids))
# return fitgamma[0]
#### CHECK ####
def effectiveFisher(residual_func, *flat_grids):
"""
Fit a quadratic to the ambiguity function tabulated on a grid.
Inputs:
- a pointer to a function to compute residuals, e.g.
z(x1, ..., xN) - fit
for N-dimensions, this is called 'residualsNd'
- N+1 flat arrays of length K. N arrays for each on N parameters,
plus 1 array of values of the overlap
Returns:
- flat array of upper-triangular elements of the effective Fisher matrix
Example:
x1s = [x1_1, ..., x1_K]
x2s = [x2_1, ..., x2_K]
...
xNs = [xN_1, ..., xN_K]
gamma = effectiveFisher(residualsNd, x1s, x2s, ..., xNs, rhos)
gamma
[g_11, g_12, ..., g_1N, g_22, ..., g_2N, g_33, ..., g_3N, ..., g_NN]
"""
x0 = np.ones(len(flat_grids) + 2)
fitgamma = leastsq(residual_func, x0=x0, args=tuple(flat_grids))
return fitgamma[0]
#### CHECK ####
def evaluate_ip_on_grid(hfSIG, P, IP, param_names, grid):
"""
Evaluate IP.ip(hsig, htmplt) everywhere on a multidimensional grid
"""
Nparams = len(param_names)
Npts = len(grid)
assert len(grid[0])==Nparams
return np.array([update_params_ip(hfSIG, P, IP, param_names, grid[i])
for i in xrange(Npts)])
def update_params_ip(hfSIG, P, IP, param_names, vals):
"""
Update the values of 1 or more member of P, recompute norm_hoff(P),
and return IP.ip(hfSIG, norm_hoff(P))
Inputs:
- hfSIG: A COMPLEX16FrequencySeries of a fixed, unchanging signal
- P: A ChooseWaveformParams object describing a varying template
- IP: An InnerProduct object
- param_names: An array of strings of parameters to be updated.
e.g. [ 'm1', 'm2', 'incl' ]
- vals: update P to have these parameter values. Must have as many
vals as length of param_names, ordered the same way
Outputs:
- A COMPLEX16FrequencySeries, same as norm_hoff(P, IP)
"""
hfTMPLT = update_params_norm_hoff(P, IP, param_names, vals)
if IP.full_output == True:
rho, rhoSeries, rhoIdx, rhoArg = IP.ip(hfSIG, hfTMPLT)
return rho
else:
return IP.ip(hfSIG, hfTMPLT)
def update_params_norm_hoff(P, IP, param_names, vals, verbose=False):
"""
Update the values of 1 or more member of P and recompute norm_hoff(P).
Inputs:
- P: A ChooseWaveformParams object
- IP: An InnerProduct object
- param_names: An array of strings of parameters to be updated.
e.g. [ 'm1', 'm2', 'incl' ]
- vals: update P to have these parameter values. Must be array-like
with same length as param_names, ordered the same way
Outputs:
- A COMPLEX16FrequencySeries, same as norm_hoff(P, IP)
"""
special_params = []
special_vals = []
assert len(param_names)==len(vals)
for i, val in enumerate(vals):
if hasattr(P, param_names[i]): # Update an attribute of P...
setattr(P, param_names[i], val)
else: # Either an incorrect param name, or a special case...
special_params.append(param_names[i])
special_vals.append(val)
# Check allowed special cases of params not in P, e.g. Mc and eta
if special_params==['Mc','eta']:
m1, m2 = lsu.m1m2(special_vals[0],
lsu.sanitize_eta(special_vals[1])) # m1,m2 = m1m2(Mc,eta)
setattr(P, 'm1', m1)
setattr(P, 'm2', m2)
elif special_params==['eta','Mc']:
m1, m2 = lsu.m1m2(lsu.sanitize_eta(special_vals[1]), special_vals[0])
setattr(P, 'm1', m1)
setattr(P, 'm2', m2)
elif special_params==['Mc']:
eta = lsu.sanitize_eta(lsu.symRatio(P.m1, P.m2))
m1, m2 = lsu.m1m2(special_vals[0], eta)
setattr(P, 'm1', m1)
setattr(P, 'm2', m2)
elif special_params==['eta']:
Mc = lsu.mchirp(P.m1, P.m2)
m1, m2 = lsu.m1m2(Mc, lsu.sanitize_eta(special_vals[0]))
setattr(P, 'm1', m1)
setattr(P, 'm2', m2)
elif special_params != []:
print special_params
raise Exception
if verbose==True: # for debugging - make sure params change properly
P.print_params()
return lsu.norm_hoff(P, IP)
def find_effective_Fisher_region(P, IP, target_match, param_names,param_bounds):
"""
Example Usage:
find_effective_Fisher_region(P, IP, 0.9, ['Mc', 'eta'], [[mchirp(P.m1,P.m2)-lal.MSUN_SI,mchirp(P.m1,P.m2)+lal.MSUN_SI], [0.05, 0.25]])
Arguments:
- P: a ChooseWaveformParams object describing a target signal
- IP: An inner product class to compute overlaps.
Should have deltaF and length consistent with P
- target_match: find parameter variation where overlap is target_match.
Should be a real number in [0,1]
- param_names: array of string names for members of P to vary.
Should have length N for N params to be varied
e.g. ['Mc', 'eta']
- param_bounds: array of max variations of each param in param_names
Should be an Nx2 array for N params to be varied
Returns:
Array of boundaries of a hypercube meant to encompass region where
match is >= target_match.
e.g. [ [3.12,3.16] , [0.12, 0.18] ]
N.B. Only checks variations along parameter axes. If params are correlated,
may get better matches off-axis, and the hypercube won't fully encompass
region where target_match is achieved. Therefore, allow a generous
safety factor in your value of 'target_match'.
"""
TOL = 1.e-6 # Don't need to be very precise for this...
Nparams = len(param_names)
assert len(param_bounds) == Nparams
param_cube = []
hfSIG = lsu.norm_hoff(P, IP)
for i, param in enumerate(param_names):
PT = P.copy()
if param=='Mc':
param_peak = lsu.mchirp(P.m1, P.m2)
elif param=='eta':
param_peak = lsu.symRatio(P.m1, P.m2)
else:
param_peak = getattr(P, param)
func = lambda x: update_params_ip(hfSIG, PT, IP, [param], [x]) - target_match
try:
min_param = brentq(func, param_peak, param_bounds[i][0], xtol=TOL)
except ValueError:
print "\nWarning! Value", param_bounds[i][0], "of", param,\
"did not bound target match", target_match, ". Using",\
param_bounds[i][0], "as the lower bound of", param,\
"range for the effective Fisher region.\n"
min_param = param_bounds[i][0]
try:
max_param = brentq(func, param_peak, param_bounds[i][1], xtol=TOL)
except ValueError:
print "\nWarning! Value", param_bounds[i][1], "of", param,\
"did not bound target match", target_match, ". Using",\
param_bounds[i][1], "as the upper bound of", param,\
"range for the effective Fisher region.\n"
max_param = param_bounds[i][1]
param_cube.append( [min_param, max_param] )
return param_cube
#
# Routines to make various types of grids for arbitrary dimension
#
def make_regular_1d_grids(param_ranges, pts_per_dim):
"""
Inputs:
- param_ranges is an array of parameter bounds, e.g.:
[ [p1_min, p1_max], [p2_min, p2_max], ..., [pN_min, pN_max] ]
- pts_per_dim is either:
a) an integer - use that many pts for every parameter
b) an array of integers of same length as param_ranges, e.g.
[ N1, N2, ..., NN ]
the n-th entry is the number of pts for the n-th parameter
Outputs:
outputs N separate 1d arrays of evenly spaced values of that parameter,
where N = len(param_ranges)
"""
Nparams = len(param_ranges)
assert len(pts_per_dim)
grid1d = []
for i in range(Nparams):
MIN = param_ranges[i][0]
MAX = param_ranges[i][1]
STEP = (MAX-MIN)/(pts_per_dim[i]-1)
EPS = STEP/100.
grid1d.append( np.arange(MIN,MAX+EPS,STEP) )
return tuple(grid1d)
def multi_dim_meshgrid(*arrs):
"""
Version of np.meshgrid generalized to arbitrary number of dimensions.
Taken from: http://stackoverflow.com/questions/1827489/numpy-meshgrid-in-3d
"""
arrs = tuple(reversed(arrs))
lens = map(len, arrs)
dim = len(arrs)
sz = 1
for s in lens:
sz*=s
ans = []
for i, arr in enumerate(arrs):
slc = [1]*dim
slc[i] = lens[i]
arr2 = np.asarray(arr).reshape(slc)
for j, sz in enumerate(lens):
if j!=i:
arr2 = arr2.repeat(sz, axis=j)
ans.append(arr2)
#return tuple(ans)
return tuple(ans[::-1])
def multi_dim_flatgrid(*arrs):
"""
Creates flattened versions of meshgrids.
Returns a tuple of arrays of values of individual parameters
at each point in a grid, returned in a flat array structure.
e.g.
x = [1,3,5]
y = [2,4,6]
X, Y = multi_dim_flatgrid(x, y)
returns:
X
[1,1,1,3,3,3,5,5,5]
Y
[2,4,6,2,4,6,2,4,6]
"""
outarrs = multi_dim_meshgrid(*arrs)
return tuple([ outarrs[i].flatten() for i in xrange(len(outarrs)) ])
def multi_dim_grid(*arrs):
"""
Creates an array of values of all pts on a multidimensional grid.
e.g.
x = [1,3,5]
y = [2,4,6]
multi_dim_grid(x, y)
returns:
[[1,2], [1,4], [1,6],
[3,2], [3,4], [3,6],
[5,2], [5,4], [5,6]]
"""
temp = multi_dim_flatgrid(*arrs)
return np.transpose( np.array(temp) )
#
# Routines for least-squares fit
#
def residuals2d(gamma, y, x1, x2):
g11 = gamma[0]
g12 = gamma[1]
g22 = gamma[2]
return y - (1. - g11*x1*x1/2. - g12*x1*x2 - g22*x2*x2/2.)
def evalfit2d(x1, x2, gamma):
g11 = gamma[0]
g12 = gamma[1]
g22 = gamma[2]
return 1. - g11*x1*x1/2. - g12*x1*x2 - g22*x2*x2/2.
def residuals3d(gamma, y, x1, x2, x3):
g11 = gamma[0]
g12 = gamma[1]
g13 = gamma[2]
g22 = gamma[3]
g23 = gamma[4]
g33 = gamma[5]
return y - (1. - g11*x1*x1/2. - g12*x1*x2 - g13*x1*x3
- g22*x2*x2/2. - g23*x2*x3 - g33*x3*x3/2.)
def evalfit3d(x1, x2, x3, gamma):
g11 = gamma[0]
g12 = gamma[1]
g13 = gamma[2]
g22 = gamma[3]
g23 = gamma[4]
g33 = gamma[5]
return 1. - g11*x1*x1/2. - g12*x1*x2 - g13*x1*x3\
- g22*x2*x2/2. - g23*x2*x3 - g33*x3*x3/2.
def residuals4d(gamma, y, x1, x2, x3, x4):
g11 = gamma[0]
g12 = gamma[1]
g13 = gamma[2]
g14 = gamma[3]
g22 = gamma[4]
g23 = gamma[5]
g24 = gamma[6]
g33 = gamma[7]
g34 = gamma[8]
g44 = gamma[9]
return y - (1. - g11*x1*x1/2. - g12*x1*x2 - g13*x1*x3 - g14*x1*x4
- g22*x2*x2/2. - g23*x2*x3 - g24*x2*x4 - g33*x3*x3/2. - g34*x3*x4
- g44*x4*x4/2.)
def evalfit4d(x1, x2, x3, x4, gamma):
g11 = gamma[0]
g12 = gamma[1]
g13 = gamma[2]
g14 = gamma[3]
g22 = gamma[4]
g23 = gamma[5]
g24 = gamma[6]
g33 = gamma[7]
g34 = gamma[8]
g44 = gamma[9]
return 1. - g11*x1*x1/2. - g12*x1*x2 - g13*x1*x3 - g14*x1*x4\
- g22*x2*x2/2. - g23*x2*x3 - g24*x2*x4 - g33*x3*x3/2. - g34*x3*x4\
- g44*x4*x4/2.
def residuals5d(gamma, y, x1, x2, x3, x4, x5):
g11 = gamma[0]
g12 = gamma[1]
g13 = gamma[2]
g14 = gamma[3]
g15 = gamma[4]
g22 = gamma[5]
g23 = gamma[6]
g24 = gamma[7]
g25 = gamma[8]
g33 = gamma[9]
g34 = gamma[10]
g35 = gamma[11]
g44 = gamma[12]
g45 = gamma[13]
g55 = gamma[14]
return y - (1. - g11*x1*x1/2. - g12*x1*x2 - g13*x1*x3 - g14*x1*x4
- g15*x1*x5 - g22*x2*x2/2. - g23*x2*x3 - g24*x2*x4 - g25*x2*x5
- g33*x3*x3/2. - g34*x3*x4 - g35*x3*x5 - g44*x4*x4/2. - g45*x4*x5
- g55*x5*x5/2.)
def evalfit5d(x1, x2, x3, x4, x5, gamma):
g11 = gamma[0]
g12 = gamma[1]
g13 = gamma[2]
g14 = gamma[3]
g15 = gamma[4]
g22 = gamma[5]
g23 = gamma[6]
g24 = gamma[7]
g25 = gamma[8]
g33 = gamma[9]
g34 = gamma[10]
g35 = gamma[11]
g44 = gamma[12]
g45 = gamma[13]
g55 = gamma[14]
return 1. - g11*x1*x1/2. - g12*x1*x2 - g13*x1*x3 - g14*x1*x4\
- g15*x1*x5 - g22*x2*x2/2. - g23*x2*x3 - g24*x2*x4 - g25*x2*x5\
- g33*x3*x3/2. - g34*x3*x4 - g35*x3*x5 - g44*x4*x4/2. - g45*x4*x5\
- g55*x5*x5/2.
# Convenience function to return eigenvalues and eigenvectors of a matrix
def eigensystem(matrix):
"""
Given an array-like 'matrix', returns:
- An array of eigenvalues
- An array of eigenvectors
- A rotation matrix that rotates the eigenbasis
into the original basis
Example:
mat = [[1,2,3],[2,4,5],[3,5,6]]
evals, evecs, rot = eigensystem(mat)
evals
array([ 11.34481428+0.j, -0.51572947+0.j, 0.17091519+0.j]
evecs
array([[-0.32798528, -0.59100905, -0.73697623],
[-0.73697623, -0.32798528, 0.59100905],
[ 0.59100905, -0.73697623, 0.32798528]])
rot
array([[-0.32798528, -0.73697623, 0.59100905],
[-0.59100905, -0.32798528, -0.73697623],
[-0.73697623, 0.59100905, 0.32798528]]))
This allows you to translate between original and eigenbases:
If [v1, v2, v3] are the components of a vector in eigenbasis e1, e2, e3
Then:
rot.dot([v1,v2,v3]) = [vx,vy,vz]
Will give the components in the original basis x, y, z
If [wx, wy, wz] are the components of a vector in original basis z, y, z
Then:
inv(rot).dot([wx,wy,wz]) = [w1,w2,w3]
Will give the components in the eigenbasis e1, e2, e3
inv(rot).dot(mat).dot(rot)
array([[evals[0], 0, 0]
[0, evals[1], 0]
[0, 0, evals[2]]])
Note: For symmetric input 'matrix', inv(rot) == evecs
"""
evals, emat = eig(matrix)
return evals, np.transpose(emat), emat
def array_to_symmetric_matrix(gamma):
"""
Given a flat array of length N*(N+1)/2 consisting of
the upper right triangle of a symmetric matrix,
return an NxN numpy array of the symmetric matrix
Example:
gamma = [1, 2, 3, 4, 5, 6]
array_to_symmetric_matrix(gamma)
array([[1,2,3],
[2,4,5],
[3,5,6]])
"""
length = len(gamma)
if length==3: # 2x2 matrix
g11 = gamma[0]
g12 = gamma[1]
g22 = gamma[2]
return np.array([[g11,g12],[g12,g22]])
if length==6: # 3x3 matrix
g11 = gamma[0]
g12 = gamma[1]
g13 = gamma[2]
g22 = gamma[3]
g23 = gamma[4]
g33 = gamma[5]
return np.array([[g11,g12,g13],[g12,g22,g23],[g13,g23,g33]])
if length==10: # 4x4 matrix
g11 = gamma[0]
g12 = gamma[1]
g13 = gamma[2]
g14 = gamma[3]
g22 = gamma[4]
g23 = gamma[5]
g24 = gamma[6]
g33 = gamma[7]
g34 = gamma[8]
g44 = gamma[9]
return np.array([[g11,g12,g13,g14],[g12,g22,g23,g24],
[g13,g23,g33,g34],[g14,g24,g34,g44]])
if length==15: # 5x5 matrix
g11 = gamma[0]
g12 = gamma[1]
g13 = gamma[2]
g14 = gamma[3]
g15 = gamma[4]
g22 = gamma[5]
g23 = gamma[6]
g24 = gamma[7]
g25 = gamma[8]
g33 = gamma[9]
g34 = gamma[10]
g35 = gamma[11]
g44 = gamma[12]
g45 = gamma[13]
g55 = gamma[14]
return np.array([[g11,g12,g13,g14,g15],[g12,g22,g23,g24,g25],
[g13,g23,g33,g34,g35],[g14,g24,g34,g44,g45],[g15,g25,g5,g45,g55]])
#
# Fill an ellipsoid uniformly in volume by points along radial spokes
#
def uniform_spoked_ellipsoid(Nrad, Nspokes, start_angles, *radii):
"""
Return an array of pts distributed uniformly inside a
D-dimensional ellipsoid. D is determined by the number of radii args given.
Output:
- cart_pts: array of pts in Cartesian coordinates
- sph_pts: array of points in spherical coordinates
(r, zenith_1, .., zenith_N-2, azimuth)
"""
D = len(radii)
assert len(start_angles)==D-1
if D==2:
return uniform_spoked_ellipsoid2d(Nrad, Nspokes, start_angles[0], *radii)
else:
raise ValueError('Not implemented for that many dimensions')
def uniform_spoked_ellipsoid2d(Nrad, Nspokes, th0, r1, r2):
"""
2D case of function uniform_spoked_ellipsoid
"""
dr = 1./Nrad
rs = np.arange(dr, 1.+dr, dr)
dth = 2.*np.pi/Nspokes
ths = np.arange(th0, 2.*np.pi + th0, dth)
rrt = np.sqrt(rs)
cart_pts = [[0.,0.]] # Put 1 pt. at origin - e.g. true parameters
sph_pts = [[0.,0.]] # Put 1 pt. at origin - e.g. true parameters
for r in rrt:
for th in ths:
x1 = r1 * r * np.cos(th)
x2 = r2 * r * np.sin(th)
cart_pts.append([x1, x2])
sph_pts.append([r, th])
return np.array(cart_pts), np.array(sph_pts)
#
# Fill an ellipsoid uniformly in volume by points along radial spokes
#
def linear_spoked_ellipsoid(Nrad, Nspokes, start_angles, *radii):
"""
Return an array of pts distributed uniformly inside a
D-dimensional ellipsoid. D is determined by the number of radii args given.
Output:
- cart_pts: array of pts in Cartesian coordinates
- sph_pts: array of points in spherical coordinates
(r, zenith_1, .., zenith_N-2, azimuth)
"""
D = len(radii)
assert len(start_angles)==D-1
if D==2:
return linear_spoked_ellipsoid2d(Nrad, Nspokes, start_angles[0], *radii)
else:
raise ValueError('Not implemented for that many dimensions')
def linear_spoked_ellipsoid2d(Nrad, Nspokes, th0, r1, r2):
"""
2D case of function linear_spoked_ellipsoid
"""
dr = 1./Nrad
rs = np.arange(dr, 1.+dr, dr)
dth = 2.*np.pi/Nspokes
ths = np.arange(th0, 2.*np.pi + th0, dth)
cart_pts = [[0.,0.]] # Put 1 pt. at origin - e.g. true parameters
sph_pts = [[0.,0.]] # Put 1 pt. at origin - e.g. true parameters
for r in rs:
for th in ths:
x1 = r1 * r * np.cos(th)
x2 = r2 * r * np.sin(th)
cart_pts.append([x1, x2])
sph_pts.append([r, th])
return np.array(cart_pts), np.array(sph_pts)
#
# Functions to return points distributed randomly, uniformly inside
# an ellipsoid of arbitrary dimension
#
def uniform_random_ellipsoid(Npts, *radii):
"""
Return an array of pts distributed randomly and uniformly inside an
D-dimensional ellipsoid. D is determined by the number of radii args given.
Output:
- cart_pts: array of pts in Cartesian coordinates
- sph_pts: array of points in spherical coordinates
(r, zenith_1, .., zenith_N-2, azimuth)
"""
D = len(radii)
if D==2:
return uniform_random_ellipsoid2d(Npts, *radii)
elif D==3:
return uniform_random_ellipsoid3d(Npts, *radii)
elif D==4:
return uniform_random_ellipsoid4d(Npts, *radii)
elif D==5:
return uniform_random_ellipsoid5d(Npts, *radii)
else:
raise ValueError('Not implemented for that many dimensions')
def uniform_random_ellipsoid2d(Npts, r1, r2):
"""
2D case of uniform_random_ellipsoid
"""
r = np.random.rand(Npts)
th = np.random.rand(Npts) * 2.*np.pi
rrt = np.sqrt(r)
x1 = r1 * rrt * np.cos(th)
x2 = r2 * rrt * np.sin(th)
cart_pts = np.transpose((x1,x2))
sph_pts = np.transpose((rrt,th))
origin = np.array([[0.,0.]]) # Always put a pt at ellipse center
cart_pts = np.append(origin, cart_pts, axis=0)
sph_pts = np.append(origin, sph_pts, axis=0)
return cart_pts, sph_pts
def uniform_random_ellipsoid3d(Npts, r1, r2, r3):
"""
3D case of uniform_random_ellipsoid
"""
r = np.random.rand(Npts)
ph = np.random.rand(Npts) * 2.*np.pi
costh = np.random.rand(Npts)*2.-1.
sinth = np.sqrt(1.-costh*costh)
th = np.arccos(costh)
rrt = r**(1./3.)
x1 = r1 * rrt * sinth * np.cos(ph)
x2 = r2 * rrt * sinth * np.sin(ph)
x3 = r3 * rrt * costh
cart_pts = np.transpose((x1,x2,x3))
cart_pts = np.transpose((rrt,th,ph))
#### CHECK ####
sph_pts = np.transpose((rrt,th,ph))
#### CHECK ####
origin = np.array([[0.,0.,0.]]) # Always put a pt at ellipse center
cart_pts = np.append(origin, cart_pts, axis=0)
sph_pts = np.append(origin, sph_pts, axis=0)
return cart_pts, sph_pts
def uniform_random_ellipsoid4d(Npts, r1, r2, r3, r4):
"""
4D case of uniform_random_ellipsoid
"""
r = np.random.rand(Npts)
ph = np.random.rand(Npts) * 2.*np.pi
costh1 = np.random.rand(Npts)*2.-1.
costh2 = np.random.rand(Npts)*2.-1.
sinth1 = np.sqrt(1.-costh1*costh1)
sinth2 = np.sqrt(1.-costh2*costh2)
th1 = np.arccos(costh1)
th2 = np.arccos(costh2)
rrt = r**(1./4.)
x1 = r1 * rrt * sinth1 * sinth2 * np.cos(ph)
x2 = r2 * rrt * sinth1 * sinth2 * np.sin(ph)
x3 = r3 * rrt * sinth1 * costh2
x4 = r4 * rrt * costh1
cart_pts = np.transpose((x1,x2,x3,x4))
sph_pts = np.transpose((rrt,th1,th2,ph))
origin = np.array([[0.,0.,0.,0.]]) # Always put a pt at ellipse center
cart_pts = np.append(origin, cart_pts, axis=0)
sph_pts = np.append(origin, sph_pts, axis=0)
return cart_pts, sph_pts
def uniform_random_ellipsoid5d(Npts, r1, r2, r3, r4, r5):
"""
5D case of uniform_random_ellipsoid
"""
r = np.random.rand(Npts)
ph = np.random.rand(Npts) * 2.*np.pi
costh1 = np.random.rand(Npts)*2.-1.
costh2 = np.random.rand(Npts)*2.-1.
costh3 = np.random.rand(Npts)*2.-1.
sinth1 = np.sqrt(1.-costh1*costh1)
sinth2 = np.sqrt(1.-costh2*costh2)
sinth3 = np.sqrt(1.-costh3*costh3)
th1 = np.arccos(costh1)
th2 = np.arccos(costh2)
th3 = np.arccos(costh3)
rrt = r**(1./5.)
x1 = r1 * rrt * sinth1 * sinth2 * sinth3 * np.cos(ph)
x2 = r2 * rrt * sinth1 * sinth2 * sinth3 * np.sin(ph)
x3 = r3 * rrt * sinth1 * sinth2 * costh3
x4 = r4 * rrt * sinth1 * costh2
x5 = r5 * rrt * costh1
cart_pts = np.transpose((x1,x2,x3,x4,x5))
sph_pts = np.transpose((rrt,th1,th2,th3,ph))
origin = np.array([[0.,0.,0.,0.,0.]]) # Always put a pt at ellipse center
cart_pts = np.append(origin, cart_pts, axis=0)
sph_pts = np.append(origin, sph_pts, axis=0)
return cart_pts, sph_pts