-
Notifications
You must be signed in to change notification settings - Fork 1
/
sdfascii.py
executable file
·1013 lines (899 loc) · 40.9 KB
/
sdfascii.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2013-2023 The sdfascii developers. All rights reserved.
# Project site: https://github.com/questrail/sdfascii
# Use of this source code is governed by a MIT-style license that
# can be found in the LICENSE.txt file for the project.
'''
sdfascii.py
Read Standard Data Format (SDF) and ASCII files created by HP/Agilent Dynamic
Signal Analyzers.
**WARNING:** Currently, only supporting SDF version 2.
'''
# Future imports
from __future__ import annotations
# Standard module imports
from datetime import datetime
import json
import struct
import sys
from typing import Any, Dict, TypedDict, Union, cast
# Data analysis related imports
import numpy as np
# import numpy.typing as npt
__version__ = '0.8.2'
FILE_HDR_RECORD_TYPE = 10
MEAS_HDR_RECORD_TYPE = 11
DATA_HDR_RECORD_TYPE = 12
VECTOR_HDR_RECORD_TYPE = 13
CHANNEL_HDR_RECORD_TYPE = 14
SCAN_STRUCT_RECORD_TYPE = 15
XDATA_HDR_RECORD_TYPE = 16
YDATA_HDR_RECORD_TYPE = 17
SCAN_BIG_RECORD_TYPE = 18
SCAN_VAR_RECORD_TYPE = 19
COMMENT_HDR_RECORD_TYPE = 20
class SDFFileHdrBase(TypedDict):
record_size: int
sdf_revision: int
application: str
measurement_start_datetime: datetime
application_version: str
num_data_hdr_records: int
num_vector_hdr_records: int
num_channel_hdr_records: int
num_unique_records: int
num_scan_struct_records: int
num_xdata_records: int
offset_data_hdr_record: int
offset_vector_record: int
offset_channel_record: int
offset_unique_record: int
offset_scan_struct_record: int
offset_xdata_record: int
offset_ydata_record: int
class SDFFileHdrV1(SDFFileHdrBase):
pass
class SDFFileHdrV2(SDFFileHdrBase):
pass
class SDFFileHdrV3(SDFFileHdrBase):
pass
class SDFMeasHdrBase(TypedDict):
record_size: int
offset_unique_record: int
block_size: int
zoom_mode_on: bool
average_type: str
average_num: int
pct_overlap: float
meas_title: str
center_freq: float
span_freq: float
sweep_freq: float
meas_type: str
real_time: str
detection: str
sweep_time: float
class SDFMeasHdrV1(SDFMeasHdrBase):
pass
class SDFMeasHdrV2(SDFMeasHdrBase):
start_freq_index: int
stop_freq_index: int
class SDFMeasHdrV3(SDFMeasHdrBase):
start_freq_index: int
stop_freq_index: int
class SDFDataHdrBase(TypedDict):
record_size: int
offset_unique_record: int
data_title: str
domain: str
data_type: str
x_resolution_type: str
x_data_type: str
x_per_point: int
y_data_type: str
y_per_point: int
y_is_complex: bool
y_is_normalized: bool
y_is_power_data: bool
y_is_valid: bool
first_vector_record_num: int
total_rows: int
xunit: SDFUnit
y_unit_valid: bool
yunit: SDFUnit
abscissa_first_x: float
abscissa_delta_x: float
class SDFDataHdrV1(SDFDataHdrBase):
pass
class SDFDataHdrV2(SDFDataHdrBase):
scan_data: bool
window_applied: bool
class SDFDataHdrV3(SDFDataHdrBase):
scan_data: bool
window_applied: bool
class SDFVectorHdr(TypedDict):
record_size: int
offset_unique_record: int
channel_record: tuple[int]
channel_power_48x: tuple[int]
class SDFChannelHdr(TypedDict):
record_size: int
offset_unique_record: int
channel_label: str
module_id: str
serial_number: str
window: SDFWindow
weight: str
delay: float
range: float
direction: str
point_num: int
coupling: str
overloaded: bool
int_label: str
eng_unit: SDFUnit
int_2_eng_unit: float
input_impedance: float
channel_attribute: str
alias_protected: bool
digital_channel: bool
channel_scale: float
channel_offset: float
gate_begin: float
gate_end: float
user_delay: float
class SDFScanStruct(TypedDict):
record_size: int
num_of_scans: int
last_scan_index: int
scan_type: str
scan_var_type: str
scan_unit: SDFUnit
class SDFUnit(TypedDict):
label: str
factor: float
mass: int
length: int
time: int
current: int
temperature: int
luminal_intensity: int
mole: int
plane_angle: int
class SDFWindow(TypedDict):
window_type: int
correction_mode: int
bw: float
time_const: float
trunc: float
wide_band_corr: float
narrow_band_corr: float
class SDFHdrV1(TypedDict, total=False):
valid_file_identifier: bool
file_hdr: SDFFileHdrV1
meas_hdr: SDFMeasHdrV1
data_hdr: list[SDFDataHdrV1]
vector_hdr: list[SDFVectorHdr]
channel_hdr: list[SDFChannelHdr]
scan_struct: SDFScanStruct
class SDFHdrV2(TypedDict, total=False):
valid_file_identifier: bool
file_hdr: SDFFileHdrV2
meas_hdr: SDFMeasHdrV2
data_hdr: list[SDFDataHdrV2]
vector_hdr: list[SDFVectorHdr]
channel_hdr: list[SDFChannelHdr]
scan_struct: SDFScanStruct
class SDFHdrV3(TypedDict, total=False):
valid_file_identifier: bool
file_hdr: SDFFileHdrV3
meas_hdr: SDFMeasHdrV3
data_hdr: list[SDFDataHdrV3]
vector_hdr: list[SDFVectorHdr]
channel_hdr: list[SDFChannelHdr]
scan_struct: SDFScanStruct
def _strip_nonprintable(input_bytes: bytes) -> str:
r"""
Convert a bytes object into a string returning any character up to, but not
including, the first instance of \x00.
"""
return input_bytes.decode('utf-8', 'replace').split('\x00', 1)[0]
def _decode_sdf_unit(binary_data: bytes) -> SDFUnit:
values = struct.unpack('>10sf8b', binary_data)
keys = ('label', 'factor', 'mass', 'length', 'time', 'current',
'temperature', 'luminal_intensity', 'mole',
'plane_angle')
unit_dict = dict(zip(keys, values))
unit_dict['label'] = _strip_nonprintable(unit_dict['label'])
return cast(SDFUnit, unit_dict)
def _decode_sdf_window(binary_data: bytes) -> SDFWindow:
values = struct.unpack(b'>2h5f', binary_data)
keys = ('window_type', 'correction_mode', 'bw', 'time_const',
'trunc', 'wide_band_corr', 'narrow_band_corr')
window_dict = dict(zip(keys, values))
window_type_decoder = {0: 'Window not applied',
1: 'Hanning',
2: 'Flat Top',
3: 'Uniform',
4: 'Force',
5: 'Response',
6: 'user-defined',
7: 'Hamming',
8: 'P301',
9: 'P310',
10: 'Kaiser-Bessel',
11: 'Harris',
12: 'Blackman',
13: 'Resolution filter',
14: 'Correlation Lead Lag',
15: 'Correlation Lag',
16: 'Gated',
17: 'P400',
}
window_dict['window_type'] = window_type_decoder[
window_dict['window_type']]
correction_mode_decoder = {0: 'Correction not applied',
1: 'Narrow band correction applied',
2: 'Wide band correction applied'}
window_dict['correction_mode'] = correction_mode_decoder[
window_dict['correction_mode']]
return cast(SDFWindow, window_dict)
def read_ascii_files(input_ascii_base_filename):
# Create the four filenames
ascii_ydata_filename = input_ascii_base_filename + '.TXT'
ascii_xdata_filename = input_ascii_base_filename + '.X'
# Read the x and y data
xdata = np.loadtxt(ascii_xdata_filename)
ydata = np.loadtxt(ascii_ydata_filename)
# Return the x and y data as a structured array
return np.core.records.fromarrays(
[xdata, ydata], names='frequency,amplitude')
def _decode_sdf_file_hdr(
record_size: int,
binary_data: bytes) -> SDFFileHdrV1 | SDFFileHdrV2 | SDFFileHdrV3:
"""Decode the header information in the SDF file.
Note: The HP documentation lists the binary indices starting a 1, whereas
Python uses 0 based arrays/indices.
Args:
record_size: An integer indicating the total size of the binary_data
including the record_type and record_size.
file_hdr_binary: The binary data for the file header including the
record_type and record_size.
Returns:
A dictionary containing the SDF header information.
"""
file_hdr: Dict[str, Union[int, str, datetime]] = {}
file_hdr['record_size'] = record_size
file_hdr['sdf_revision'], = struct.unpack('>h', binary_data[6:8])
application_code, = struct.unpack('>h', binary_data[8:10])
application_decoder = {-1: 'HP VISTA', -2: 'HP SINE', -3: 'HP 35660A',
-4: 'HP 3562A, HP 3563A', -5: 'HP 3588A',
-6: 'HP 3589A', -99: 'Unknown',
1: 'HP 3566A, HP 3567A', 2: 'HP 35665A',
3: 'HP 3560A', 4: 'HP 89410A, HP 89440A',
7: 'HP 35635R', 8: 'HP 35654A-S1A',
9: 'HP 3569A', 10: 'HP 35670A', 11: 'HP 3587S'}
file_hdr['application'] = application_decoder[application_code]
msr_year, msr_month_day, msr_hour_min = struct.unpack(
'>hhh', binary_data[10:16])
msr_month, msr_day = divmod(msr_month_day, 100)
msr_hour, msr_sec = divmod(msr_hour_min, 100)
file_hdr['measurement_start_datetime'] = datetime(
msr_year, msr_month, msr_day, msr_hour, msr_sec)
file_hdr['application_version'] = _strip_nonprintable(
struct.unpack('>8s', binary_data[16:24])[0])
(file_hdr['num_data_hdr_records'], file_hdr['num_vector_hdr_records'],
file_hdr['num_channel_hdr_records'], file_hdr['num_unique_records'],
file_hdr['num_scan_struct_records'], file_hdr['num_xdata_records']) = \
struct.unpack('>6h', binary_data[24:36])
(file_hdr['offset_data_hdr_record'], file_hdr['offset_vector_record'],
file_hdr['offset_channel_record'], file_hdr['offset_unique_record'],
file_hdr['offset_scan_struct_record'], file_hdr['offset_xdata_record'],
file_hdr['offset_ydata_record']) = \
struct.unpack('>7l', binary_data[36:64])
if file_hdr['sdf_revision'] == 1:
temp_file_hdr = cast(SDFFileHdrV1, file_hdr)
elif file_hdr['sdf_revision'] == 2:
temp_file_hdr = cast(SDFFileHdrV2, file_hdr)
elif file_hdr['sdf_revision'] == 3:
# Continue reading bytes 65-80 if this is SDF ver. 3
# FIXME: Need to add the code for SDF ver. 3 in the future.
temp_file_hdr = cast(SDFFileHdrV3, file_hdr)
else:
# SDF revision not recognized
sys.exit('Did not recognize SDF revision in file header.')
return temp_file_hdr
def _decode_sdf_meas_hdr(
record_size: int,
sdf_revision: int,
binary_data: bytes) -> SDFMeasHdrV1 | SDFMeasHdrV2 | SDFMeasHdrV3:
'''
Decode the measurement header binary data
'''
meas_hdr: dict = {}
# FIXME(mdr): Check that the record_type is 11 (short int 0:2).
record_size_from_binary_data = struct.unpack('>l', binary_data[2:6])[0]
if record_size != record_size_from_binary_data:
sys.exit('Bad record size in SDF_MEAS_HDR')
meas_hdr['record_size'] = record_size
(meas_hdr['offset_unique_record'],) = struct.unpack(
b'>1l', binary_data[6:10])
meas_hdr['block_size'], = struct.unpack('>l', binary_data[18:22])
meas_hdr['zoom_mode_on'], = struct.unpack('>h', binary_data[22:24])
meas_hdr['zoom_mode_on'] = bool(meas_hdr['zoom_mode_on'])
coded_average_type, = struct.unpack('>h', binary_data[28:30])
average_type_decoder = {0: 'None', 1: 'RMS', 2: 'RMS Exponential',
3: 'Vector', 4: 'Vector Exponential',
5: 'Continuous Peak Hold', 6: 'Peak'}
meas_hdr['average_type'] = average_type_decoder[coded_average_type]
meas_hdr['average_num'], = struct.unpack('>l', binary_data[30:34])
meas_hdr['pct_overlap'], = struct.unpack(b'>f', binary_data[34:38])
meas_hdr['meas_title'] = _strip_nonprintable(binary_data[38:98])
meas_hdr['video_bw'], = struct.unpack('>f', binary_data[98:102])
(meas_hdr['center_freq'], meas_hdr['span_freq'],
meas_hdr['sweep_freq']) = struct.unpack(
b'>3d', binary_data[102:126])
coded_meas_type, = struct.unpack('>h', binary_data[126:128])
meas_type_decoder = {-99: 'Unknown measurement',
0: 'Spectrum measurement',
1: 'Network measurement',
2: 'Swept measurement',
3: 'FFT measurement',
4: 'Orders measurement',
5: 'Octave measurement',
6: 'Capture measurement',
7: 'Correlation measurement',
8: 'Histogram measurement',
9: 'Swept network measurement',
10: 'FFT network measurement',
}
meas_hdr['meas_type'] = meas_type_decoder[coded_meas_type]
coded_real_time, = struct.unpack('>h', binary_data[128:130])
real_time_decoder = {0: 'Not continuous', 1: 'Continuous'}
meas_hdr['real_time'] = real_time_decoder[coded_real_time]
coded_detection, = struct.unpack('>h', binary_data[130:132])
detection_decoder = {-99: 'Unknown detection type',
0: 'Sample detection',
1: 'Positive peak detection',
2: 'Negative peak detection',
3: 'Rose-and-fell detection'}
meas_hdr['detection'] = detection_decoder[coded_detection]
meas_hdr['sweep_time'], = struct.unpack(b'>d', binary_data[132:140])
if sdf_revision == 1:
# Decode the revision 1 stuff
# FIXME: Add rev 1 stuff later
temp_meas_hdr = cast(SDFMeasHdrV1, meas_hdr)
elif sdf_revision == 2:
# Decode the revision 2 stuff
(meas_hdr['start_freq_index'], meas_hdr['stop_freq_index']) = \
struct.unpack(b'>2h', binary_data[24:28])
temp_meas_hdr = cast(SDFMeasHdrV2, meas_hdr)
elif sdf_revision == 3:
# Decode the revision 3 related stuff
# FIXME: Add rev 3 stuff later
temp_meas_hdr = cast(SDFMeasHdrV3, meas_hdr)
else:
# SDF revision not recognized
sys.exit('Did not recognize SDF revision passed to meas hdr.')
return temp_meas_hdr
def _decode_sdf_data_hdr(
record_size: int,
sdf_revision: int,
binary_data: bytes) -> Union[SDFDataHdrV1, SDFDataHdrV2]:
'''
Decode the data header binary data
'''
data_hdr: dict = {}
data_hdr['record_size'] = record_size
(data_hdr['offset_unique_record'],) = \
struct.unpack('>1l', binary_data[6:10])
data_hdr['data_title'] = _strip_nonprintable(
struct.unpack(b'>16s', binary_data[10:26])[0])
coded_domain, = struct.unpack('>h', binary_data[26:28])
domain_decoder = {-99: 'Unknown',
0: 'Frequency domain',
1: 'Time domain',
2: 'Amplitude domain',
3: 'RPM',
4: 'Order',
5: 'Channel',
6: 'Octave'}
data_hdr['domain'] = domain_decoder[coded_domain]
coded_data_type, = struct.unpack('>h', binary_data[28:30])
data_type_decoder = {-99: 'Unknown',
0: 'Time',
1: 'Linear spectrum',
2: 'Auto-power spectrum',
3: 'Cross-power spectrum',
4: 'Frequency response',
5: 'Auto-correlation',
6: 'Cross-correlation',
7: 'Impulse response',
8: 'Ordinary coherence',
9: 'Partial coherence',
10: 'Multiple coherence',
11: 'Full octave',
12: 'Third octave',
13: 'Convolution',
14: 'Histogram',
15: 'Probability density function',
16: 'Cumulative density function,',
17: 'Power spectrum order tracking',
18: 'Composite power tracking',
19: 'Phase order tracking',
20: 'RPM spectral',
21: 'Order ratio',
22: 'Orbit',
23: 'HP 35650 series calibration',
24: 'Sine rms pwr data',
25: 'Sine variance data',
26: 'Sine range data',
27: 'Sine settle time data',
28: 'Sine integ time data',
29: 'Sine source data',
30: 'Sine overload data',
31: 'Sine linear data',
32: 'Synthesis',
33: 'Curve fit weighting function',
34: 'Frequency corrections (for capture)',
35: 'All pass time data',
36: 'Norm reference data',
37: 'tachometer data',
38: 'limit line data',
39: 'twelfth octave data',
40: 'S11 data',
41: 'S21 data',
42: 'S12 data',
43: 'S22 data',
44: 'PSD data',
45: 'decimated time data',
46: 'overload data',
47: 'compressed time data',
48: 'external trigger data',
49: 'pressure data',
50: 'intensity data',
51: 'PI index data',
52: 'velocity data',
53: 'PV index data',
54: 'sound power data',
55: 'field indicator data',
56: 'partial power data',
57: 'Ln 1 data',
58: 'Ln 10 data',
59: 'Ln 50 data',
60: 'Ln 90 data',
61: 'Ln 99 data',
62: 'Ln user data',
63: 'T20 data',
64: 'T30 data',
65: 'RT60 data',
66: 'average count data',
68: ' IQ measured time',
69: ' IQ measured spectrum',
70: ' IQ reference time',
71: ' IQ reference spectrum',
72: ' IQ error magnitude',
73: ' IQ error phase',
74: ' IQ error vector time',
75: ' IQ error vector spectrum',
76: ' symbol table data',
}
data_hdr['data_type'] = data_type_decoder[coded_data_type]
coded_x_resolution_type, = struct.unpack('>h', binary_data[42:44])
x_resolution_type_decoder = {0: 'Linear', 1: 'Logarithmic',
2: 'Arbitrary, one per file',
3: 'Arbitrary, one per data type',
4: 'Arbitrary, one per trace'}
data_hdr['x_resolution_type'] = \
x_resolution_type_decoder[coded_x_resolution_type]
coded_x_data_type, = struct.unpack('>h', binary_data[44:46])
x_data_type_decoder = {1: 'short', 2: 'long', 3: 'float', 4: 'double'}
data_hdr['x_data_type'] = x_data_type_decoder[coded_x_data_type]
data_hdr['x_per_point'], = struct.unpack('>h', binary_data[46:48])
coded_y_data_type, = struct.unpack('>h', binary_data[48:50])
y_data_type_decoder = {1: 'short', 2: 'long', 3: 'float', 4: 'double'}
data_hdr['y_data_type'] = y_data_type_decoder[coded_y_data_type]
data_hdr['y_per_point'], = struct.unpack('>h', binary_data[50:52])
data_hdr['y_is_complex'], = struct.unpack('>h', binary_data[52:54])
data_hdr['y_is_complex'] = bool(data_hdr['y_is_complex'])
data_hdr['y_is_normalized'], = struct.unpack('>h', binary_data[54:56])
data_hdr['y_is_normalized'] = bool(data_hdr['y_is_normalized'])
data_hdr['y_is_power_data'], = struct.unpack('>h', binary_data[56:58])
data_hdr['y_is_power_data'] = bool(data_hdr['y_is_power_data'])
data_hdr['y_is_valid'], = struct.unpack('>h', binary_data[58:60])
data_hdr['y_is_valid'] = bool(data_hdr['y_is_valid'])
data_hdr['first_vector_record_num'], = struct.unpack(
'>l', binary_data[60:64])
data_hdr['total_rows'], data_hdr['total_cols'] = struct.unpack(
'>2h', binary_data[64:68])
data_hdr['xunit'] = _decode_sdf_unit(binary_data[68:90])
data_hdr['y_unit_valid'], = struct.unpack('>h', binary_data[90:92])
data_hdr['y_unit_valid'] = bool(data_hdr['y_unit_valid'])
data_hdr['yunit'] = _decode_sdf_unit(binary_data[92:114])
if sdf_revision == 1:
# Decode the revision 1 stuff
# FIXME: Add rev 1 stuff later
(data_hdr['abscissa_first_x'], data_hdr['abscissa_delta_x']) = \
struct.unpack('>2f', binary_data[34:42])
temp_data_hdr = cast(SDFDataHdrV1, data_hdr)
elif sdf_revision == 2:
# Decode the revision 2 stuff
(data_hdr['num_points'], data_hdr['last_valid_index']) = \
struct.unpack('>2h', binary_data[30:34])
(data_hdr['abscissa_first_x'], data_hdr['abscissa_delta_x']) = \
struct.unpack(b'>2d', binary_data[114:130])
data_hdr['scan_data'], = struct.unpack('>h', binary_data[130:132])
data_hdr['scan_data'] = bool(data_hdr['scan_data'])
data_hdr['window_applied'], = struct.unpack('>h', binary_data[132:134])
data_hdr['window_applied'] = bool(data_hdr['window_applied'])
temp_data_hdr = cast(SDFDataHdrV2, data_hdr)
elif sdf_revision == 3:
# Decode the revision 3 related stuff
# FIXME: Add rev 3 stuff later
pass
else:
# SDF revision not recognized
sys.exit('Did not recognize SDF revision')
return temp_data_hdr
def _decode_sdf_vector_hdr(
record_size: int,
sdf_revision: int,
binary_data: bytes) -> SDFVectorHdr:
'''
Decode the vector header binary data
'''
vector_hdr: dict = {}
vector_hdr['record_size'] = record_size
(vector_hdr['offset_unique_record'],) = \
struct.unpack('>l', binary_data[6:10])
vector_hdr['channel_record'] = struct.unpack('>2h', binary_data[10:14])
vector_hdr['channel_power_48x'] = struct.unpack('>2h', binary_data[14:18])
return cast(SDFVectorHdr, vector_hdr)
def _decode_sdf_channel_hdr(
record_size: int,
sdf_revision: int,
binary_data: bytes) -> SDFChannelHdr:
"""Decode the channel header binary data to a dictionary.
"""
channel_hdr: dict = {}
channel_hdr['record_size'] = record_size
(channel_hdr['offset_unique_record'],) = \
struct.unpack('>l', binary_data[6:10])
channel_hdr['channel_label'] = _strip_nonprintable(
struct.unpack(b'>30s', binary_data[10:40])[0])
channel_hdr['module_id'] = _strip_nonprintable(
struct.unpack(b'>12s', binary_data[40:52])[0])
channel_hdr['serial_number'] = _strip_nonprintable(
struct.unpack('>12s', binary_data[52:64])[0])
channel_hdr['window'] = _decode_sdf_window(binary_data[64:88])
coded_weight, = struct.unpack('>h', binary_data[88:90])
weight_decoder = {0: 'No weighting', 1: 'A-weighting',
2: 'B-weighting', 3: 'C-weighting'}
channel_hdr['weight'] = weight_decoder[coded_weight]
(channel_hdr['delay'], channel_hdr['range']) = struct.unpack(
b'>2f', binary_data[90:98])
coded_direction, = struct.unpack('>h', binary_data[98:100])
direction_decoder = {-9: '-TZ', -8: '-TY', -7: '-TX', -3: '-Z',
-2: '-Y', -1: 'X', 0: 'No direction specified',
1: 'X', 2: 'Y', 3: 'Z', 4: 'Radial',
5: 'Tangential, theta angle',
6: 'Tangential, phi angle', 7: 'TX',
8: 'TY', 9: 'TZ'}
channel_hdr['direction'] = direction_decoder[coded_direction]
channel_hdr['point_num'], = struct.unpack('>h', binary_data[100:102])
coded_coupling, = struct.unpack('>h', binary_data[102:104])
coupling_decoder = {0: 'DC', 1: 'AC'}
channel_hdr['coupling'] = coupling_decoder[coded_coupling]
channel_hdr['overloaded'], = struct.unpack('>h', binary_data[104:106])
channel_hdr['overloaded'] = bool(channel_hdr['overloaded'])
channel_hdr['int_label'] = _strip_nonprintable(
struct.unpack(b'>10s', binary_data[106:116])[0])
channel_hdr['eng_unit'] = _decode_sdf_unit(binary_data[116:138])
channel_hdr['int_2_eng_unit'], = struct.unpack('>f', binary_data[138:142])
channel_hdr['input_impedance'], = struct.unpack('>f', binary_data[142:146])
coded_channel_attribute, = struct.unpack('>h', binary_data[146:148])
channel_attribute_decoder = {-99: 'Unknown attribute', 0: 'No attribute',
1: 'Tach attribute', 2: 'Reference attribute',
3: 'Tach and reference attribute',
4: 'Clockwise attribute'}
channel_hdr['channel_attribute'] = \
channel_attribute_decoder[coded_channel_attribute]
channel_hdr['alias_protected'], = struct.unpack('>h', binary_data[148:150])
channel_hdr['alias_protected'] = bool(channel_hdr['alias_protected'])
channel_hdr['digital_channel'], = struct.unpack('>h', binary_data[150:152])
channel_hdr['digital_channel'] = bool(channel_hdr['digital_channel'])
(channel_hdr['channel_scale'], channel_hdr['channel_offset'],
channel_hdr['gate_begin'], channel_hdr['gate_end'],
channel_hdr['user_delay']) = struct.unpack(
b'>5d', binary_data[152:192])
return cast(SDFChannelHdr, channel_hdr)
def _decode_sdf_scan_struct(
record_size: int,
sdf_revision: int,
binary_data: bytes) -> SDFScanStruct:
"""Decode the scan structure binary data to a dictionary.
"""
scan_struct: dict = {}
scan_struct['record_size'] = record_size
scan_struct['num_of_scans'], = struct.unpack('>h', binary_data[6:8])
scan_struct['last_scan_index'], = struct.unpack('>h', binary_data[8:10])
coded_scan_type, = struct.unpack('>h', binary_data[10:12])
# The HP Standard Data Foramt Utilties User's Guide shows 0 = Depth and
# 1 = Scan.
# However, the .DAT file created by 35670A shows 1 = Depth.
# I'm going to believe the documentation
scan_type_decoder = {0: 'Depth', 1: 'Scan'}
scan_struct['scan_type'] = scan_type_decoder[coded_scan_type]
coded_scan_var_type, = struct.unpack('>h', binary_data[12:14])
scan_var_type_decoder = {1: 'Short', 2: 'Long', 3: 'Float',
4: 'Double'}
scan_struct['scan_var_type'] = scan_var_type_decoder[coded_scan_var_type]
scan_struct['scan_unit'] = _decode_sdf_unit(binary_data[14:36])
return cast(SDFScanStruct, scan_struct)
def read_sdf_file(sdf_filename: str) -> tuple[Any, Any]:
"""Read the binary SDF file into a dictionary.
The SDF format is described in Appendix B of the Standard Data Format
Utilities User's Guide. There are three different versions of the SDF file
format.
Args:
sdf_filename: A string containing the SDF filename to be read.
Returns:
A tuple containing a dictionary of the header information and a numpy
array containing the data.
"""
sdf_hdr: dict = {}
sdf_hdr['valid_file_identifier'] = False
# There are zero or more channel header records.
sdf_hdr['channel_hdr'] = []
with open(sdf_filename, 'rb') as sdf_file:
# Read SDF file_identfication
file_identifier = sdf_file.read(2)
if file_identifier != b'B\x00':
# Didn't find a valid file identifer, so bail out
sys.exit(f'Invalid file identifier: {file_identifier!r}')
sdf_hdr['valid_file_identifier'] = True
# Determine record type (short) and record size (long)
# Every record has these two special fields at the start
# > = big-endian
# h = short integer (2 bytes)
# l = long integer (4 bytes)
record_type_size_format = '>hl'
# Process the file header record
file_hdr_record_type, file_hdr_record_size = struct.unpack(
record_type_size_format,
sdf_file.read(struct.calcsize(
record_type_size_format.encode())))
# Confirm this is a file header record.
if file_hdr_record_type != FILE_HDR_RECORD_TYPE:
sys.exit('Error processing SDF file; expected file header')
# Found the file header record
# Process the entire file header record including the record type
# (short) and record size (long)
sdf_file.seek(sdf_file.tell() -
struct.calcsize(record_type_size_format))
sdf_hdr['file_hdr'] = _decode_sdf_file_hdr(
file_hdr_record_size,
sdf_file.read(file_hdr_record_size))
# Process the measurement header record
meas_hdr_record_type, meas_hdr_record_size = struct.unpack(
record_type_size_format,
sdf_file.read(struct.calcsize(record_type_size_format)))
# Confirm this is a measurement header record.
if meas_hdr_record_type != MEAS_HDR_RECORD_TYPE:
sys.exit('Error processing SDF file; expected measurement header')
# Found the measurement header record
sdf_file.seek(sdf_file.tell() -
struct.calcsize(record_type_size_format))
sdf_hdr['meas_hdr'] = _decode_sdf_meas_hdr(
meas_hdr_record_size,
sdf_hdr['file_hdr']['sdf_revision'],
sdf_file.read(meas_hdr_record_size))
# Decode the data header records
sdf_hdr['data_hdr'] = []
# Initialize record size to 0 until we know the answer
data_hdr_record_size = 0
for data_hdr_record_index in range(
sdf_hdr['file_hdr']['num_data_hdr_records']):
# Move to the start of the data header record
sdf_file.seek(sdf_hdr['file_hdr']['offset_data_hdr_record'] +
data_hdr_record_index * data_hdr_record_size)
# Read the record type and size
data_hdr_record_type, data_hdr_record_size = struct.unpack(
record_type_size_format,
sdf_file.read(struct.calcsize(record_type_size_format)))
# Confirm this is a data header record.
if data_hdr_record_type != DATA_HDR_RECORD_TYPE:
sys.exit('This should have been a data header record.')
# This is a data header record
sdf_file.seek(sdf_file.tell() -
struct.calcsize(record_type_size_format))
sdf_hdr['data_hdr'].append(
_decode_sdf_data_hdr(
data_hdr_record_size,
sdf_hdr['file_hdr']['sdf_revision'],
sdf_file.read(data_hdr_record_size)))
# Decode the vector header records
sdf_hdr['vector_hdr'] = []
# Initialize record size to 0 until we know the answer
vector_hdr_record_size = 0
for vector_hdr_record_index in range(
sdf_hdr['file_hdr']['num_vector_hdr_records']):
# Move to the start of the vector header record
sdf_file.seek(sdf_hdr['file_hdr']['offset_vector_record'] +
vector_hdr_record_index * vector_hdr_record_size)
# Read the record type and size
# The record type should be 13 and the size should be 18 bytes
vector_hdr_record_type, vector_hdr_record_size = struct.unpack(
record_type_size_format,
sdf_file.read(struct.calcsize(record_type_size_format)))
# Confirm this is a vector header record.
if vector_hdr_record_type != VECTOR_HDR_RECORD_TYPE:
sys.exit('This should have been a vector header record.')
# This is a vector header record
# Backup and read all of the vector header record including
# the record type and record size
sdf_file.seek(sdf_file.tell() -
struct.calcsize(record_type_size_format))
sdf_hdr['vector_hdr'].append(_decode_sdf_vector_hdr(
vector_hdr_record_size,
sdf_hdr['file_hdr']['sdf_revision'],
sdf_file.read(vector_hdr_record_size)))
# Decode the channel header records
sdf_hdr['channel_hdr'] = []
# Initialize record size to 0 until we know the answer
channel_hdr_record_size = 0
for channel_hdr_record_index in range(
sdf_hdr['file_hdr']['num_channel_hdr_records']):
# Move to the start of the channel header record
sdf_file.seek(sdf_hdr['file_hdr']['offset_channel_record'] +
channel_hdr_record_index * channel_hdr_record_size)
# Read the record type and size
channel_hdr_record_type, channel_hdr_record_size = struct.unpack(
record_type_size_format,
sdf_file.read(struct.calcsize(record_type_size_format)))
# Confirm this is a channel header record.
if channel_hdr_record_type != CHANNEL_HDR_RECORD_TYPE:
sys.exit('This should have been a channel header record.')
# This is a channel header record
# Backup and read all of the channel header record including
# the record type and record size
sdf_file.seek(sdf_file.tell() -
struct.calcsize(record_type_size_format))
sdf_hdr['channel_hdr'].append(_decode_sdf_channel_hdr(
channel_hdr_record_size,
sdf_hdr['file_hdr']['sdf_revision'],
sdf_file.read(channel_hdr_record_size)))
# Decode the scan structure records
# Initialize record size to 0 until we know the answer
scan_struct_record_size = 0
for scan_struct_record_index in range(
sdf_hdr['file_hdr']['num_scan_struct_records']):
# Move to the start of the scan struct record
sdf_file.seek(sdf_hdr['file_hdr']['offset_scan_struct_record'] +
scan_struct_record_index * scan_struct_record_size)
# Read the record type and size
scan_struct_record_type, scan_struct_record_size = struct.unpack(
record_type_size_format,
sdf_file.read(struct.calcsize(record_type_size_format)))
# Confirm this is a channel header record.
if scan_struct_record_type != SCAN_STRUCT_RECORD_TYPE:
sys.exit('This should have been a scan struct record.')
# This is a channel header record
# Backup and read all of the channel header record including
# the record type and record size
sdf_file.seek(sdf_file.tell() -
struct.calcsize(record_type_size_format))
sdf_hdr['scan_struct'] = _decode_sdf_scan_struct(
scan_struct_record_size,
sdf_hdr['file_hdr']['sdf_revision'],
sdf_file.read(scan_struct_record_size))
# ------------------------------------------------------------------- #
# Decode the Y-axis data records
# The y-data offset will be -1 if there is no y-data
# ------------------------------------------------------------------- #
if sdf_hdr['file_hdr']['offset_ydata_record'] >= 0:
# Move to the start of the y-axis data record
sdf_file.seek(sdf_hdr['file_hdr']['offset_ydata_record'])
# Read the record type and size
yaxis_data_record_type, yaxis_data_record_size = struct.unpack(
record_type_size_format,
sdf_file.read(struct.calcsize(record_type_size_format)))
# Confirm we received a y-axis data record
if yaxis_data_record_type != YDATA_HDR_RECORD_TYPE:
sys.exit('This should have been a scan struct record.')
# FIXME: Need to handle more than just the first data_hdr
data_hdr = sdf_hdr['data_hdr'][0]
vector_id = data_hdr['first_vector_record_num']
# Create the combined trace correction factor.
vector_hdr = sdf_hdr['vector_hdr'][vector_id]
resp_ch_id = vector_hdr['channel_record'][0]
pwr_of_resp_ch = vector_hdr['channel_power_48x'][0]
exciter_ch_id = vector_hdr['channel_record'][1]
pwr_of_exciter_ch = vector_hdr['channel_power_48x'][1]
# Calculate the response channel combined correction factor.
if resp_ch_id == -1:
resp_ch_corr_factor = 1
else:
resp_ch = sdf_hdr['channel_hdr'][resp_ch_id]
# Calculate the engineering unit (EU) correction. EU correction
# allows you to convert y-axis data from the instrument’s
# internal unit to some user-defined unit (such as g — the
# acceleration of gravity). An EU correction factor is included
# in each Channel Header record; the factor’s field name is
# int2engrUnit.
resp_eu_corr = resp_ch['int_2_eng_unit']
# Calculate the window correction, which is necessary only for
# FREQ or ORDER domain data.
if data_hdr['domain'] == 'Frequency domain' or \
data_hdr['domain'] == 'Channel':
resp_window_corr = \
resp_ch['window']['narrow_band_corr']
else:
resp_window_corr = 1.0
# Calculate te combined correction factor for the response
# channel.
resp_ch_corr_factor = (
(resp_window_corr / resp_eu_corr) ** (pwr_of_resp_ch / 48))
# Calculate the exciter channel combined correction factor.
if exciter_ch_id == -1:
exciter_ch_corr_factor = 1
else:
exciter_ch = sdf_hdr['channel_hdr'][exciter_ch_id]
exciter_eu_corr = exciter_ch['int_2_eng_unit']
# Calculate the window correction, which is necessary only for
# FREQ or ORDER domain data.
if data_hdr['domain'] == 'Frequency domain' or \
data_hdr['domain'] == 'Channel':
exciter_window_corr = \
exciter_ch['window']['narrow_band_corr']
else:
exciter_window_corr = 1.0
# Calculate te combined correction factor for the exciter
# channel.
exciter_ch_corr_factor = (
(exciter_window_corr / exciter_eu_corr) **
(pwr_of_exciter_ch / 48))
trace_corr_factor = resp_ch_corr_factor * exciter_ch_corr_factor
# Read the y-axis data record
# FIXME: Need to handle cases where the y-data has muliple points.
# Right now we're only handling either single floats or single
# complex values.
dtype: Any = np.dtype('>f')
count = data_hdr['num_points']
if data_hdr['y_is_complex']:
dtype = np.dtype('>c8')
count *= 2
sdf_data = np.fromfile(
file=sdf_file,
dtype=dtype,
count=count,
sep='')
# Apply the trace correction factor.
sdf_data = trace_corr_factor * sdf_data
# FIXME: I'm cheating if this is a 35670A measurement and
# converting from the Vpk^2 (native units) to Vrms. Convert from
# Vpk^2 to Vpk and then to Vrms
if sdf_hdr['file_hdr']['application'] == 'HP 35670A':
sdf_data = np.sqrt(sdf_data) / np.sqrt(2)
# FIXME: I'm only returning the data over the start and stop
# frequency indices, which are 0 & 1600, respectively. The
# last_valid_index is 2048. Why the discrepancy?
start_idx = sdf_hdr['meas_hdr']['start_freq_index']
stop_idx = sdf_hdr['meas_hdr']['stop_freq_index']
sdf_data = sdf_data[start_idx:stop_idx+1]
return sdf_hdr, sdf_data
if __name__ == "__main__":
import argparse