-
Notifications
You must be signed in to change notification settings - Fork 0
/
ctcheat.tex
886 lines (749 loc) · 29 KB
/
ctcheat.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
% Header <<<
\RequirePackage[l2tabu,orthodox]{nag}
\RequirePackage{fixltx2e}
\documentclass[10pt,twocolumn,letterpaper]{article}
\DeclareSymbolFont{AMSb}{U}{msb}{m}{n}
\DeclareMathAlphabet{\mathbbm}{U}{bbm}{m}{n}
\title{Category Theory Cheat Sheet}
%\author{Nathaniel Wesley Filardo}
\usepackage{xparse}
\usepackage{amsmath,amssymb,amsthm,latexsym}
\usepackage{fancyhdr}
\usepackage{titlesec} % [tiny,center,compact,sc]
\usepackage[cm]{fullpage}
\usepackage{pstricks}
\usepackage{graphicx}
\usepackage{verbatim}
\usepackage{bm}
\usepackage{ifthen}
\usepackage[all]{xypic}
\usepackage{textcomp}
\usepackage{url}
\usepackage{multirow}
\usepackage{enumitem}
\usepackage{etoolbox}
\usepackage{hyperref}
\hypersetup{
colorlinks,
linkcolor={red!50!black},
citecolor={blue!50!black},
urlcolor={blue!80!black}
}
\usepackage{makeidx}\makeindex
%\setlist{nolistsep}
%http://tex.stackexchange.com/questions/126750/how-can-i-number-paragraphs-without-higher-level-counters
\usepackage{chngcntr}
\counterwithout{paragraph}{subsubsection}
\renewcommand{\theparagraph}{{\tiny\P}{\small\arabic{paragraph}}}
\titleformat{\paragraph}[runin]{\normalfont\bfseries}{\theparagraph}{\wordsep}{}
\titlespacing{\paragraph}{0pt}{3.25ex plus 1ex minus .2ex}{\wordsep}
\setcounter{secnumdepth}{4}
\renewcommand{\baselinestretch}{0.9}
%\newtheorem{thm}{Thm}[section]
%\newtheorem{dfn}{Def}[section]
\setlength{\parindent}{0pt}
\setlength{\parskip}{-2pt}
% http://www.latex-community.org/forum/viewtopic.php?f=46&t=3837&start=0#p15112
\makeatletter
\g@addto@macro\normalsize{%
\setlength\abovedisplayskip{0pt}%
\setlength\abovedisplayshortskip{0pt}%
\setlength\belowdisplayskip{0pt}%
\setlength\belowdisplayshortskip{0pt}%
}
\makeatother
% http://comments.gmane.org/gmane.comp.tex.xy-pic/223
% fixes {>->} having the tail overlap the item.
\newdir{ >}{{}*!/-2.6667\jot/\dir{>}}
%Scalable bracket-like
\newcommand{\paren}[1]{\left({#1}\right)}
\newcommand{\brak}[1]{\left[{#1}\right]}
\newcommand{\abs}[1]{\left\lvert{#1}\right\rvert}
\newcommand{\ang}[1]{\left\langle{#1}\right\rangle}
\newcommand{\set}[1]{\left\{{#1}\right\}}
%Mathematics
\newcommand{\condexp}[1]{\ifthenelse{\equal{#1}{false}}{}{^{#1}}}
\newcommand{\dd}[3][false]{\frac{d\condexp{#1}{#2}}{d{#3}\condexp{#1}}}
\newcommand{\pd}[3][false]{\frac{\partial\condexp{#1}{#2}}{\partial{#3}\condexp{#1}}}
\newcommand{\ifrac}[2]{{#1}/{#2}}
%Quantum Mechanics
\newcommand{\ket}[1]{\left\lvert{#1}\right\rangle}
\newcommand{\bra}[1]{\left\langle{#1}\right\rvert}
\newcommand{\braket}[2]{\left\langle{#1}\middle\vert{#2}\right\rangle}
\newcommand{\Braket}[3]{\left\langle{#1}\middle\vert{#2}\middle\vert{#3}\right\rangle}
\newcommand{\dyad}[2]{\left\lvert{#1}\middle\rangle\middle\langle{#2}\right\rvert}
\DeclareMathOperator{\mm}{\mid\mid}
\newcommand{\natto}{\overset{\cdot}{\to}}
\newcommand{\defnref}[3][]{\ifstrempty{#1}{\ref{defn:#2}}{\ref{defn:#1}}}
\DeclareDocumentCommand{\defn}{ O{} D<>{} m }{%
{\ifstrempty{#1}%
{\label{defn:#3}}%
{\label{defn:#1}}%
\ifstrempty{#2}%
{\index{#3|defnref[#1]{#3}}\bfseries #3}%
{\index{#2#3|defnref[#1]{#3}}\bfseries #3}}%
}
\newcommand\xrdefnhelper[1]{defn:#1}
\newcommand{\xrdefn}[1]{\ref{\forcsvlist{\xrdefnhelper}{#1}}}
\newcommand{\hrdefn}[2][]{\ifstrempty{#1}{\hyperref[defn:#2]{#2}[\ref{defn:#2}]}
{\hyperref[defn:#1]{#2}[\ref{defn:#1}]}}
\newcommand\xrexhelper[1]{ex:#1}
\newcommand{\xrex}[1]{EX: \ref{\forcsvlist{\xrexhelper}{#1}}}
\begin{document}
%>>>
% Intro <<<
Unless otherwise notated, references are to \textit{Abstract and Concrete
Categories: The Joy of Cats}, \cite{adamek:joy}. Notation follows theirs
with some contamination from Awodey's \textit{Category Theory},
\cite{awodey:ct}, and Pierce's \textit{Basic Category Theory for Computer
Scientists}, \cite{pierce:basicct}.
Entries within each section are roughly sorted by definition, alphabetically.
Quantifiers are written perhaps unusually in this document, as $Q_{\phi}$,
where $Q$ is $\forall$, $\exists$, $\bigcup$, etc. and $\phi$ is a list of
variables or an expression whose free variables are quantified over.
Constrained quantification may be written as $v_1 : \tau_1, v_2 : \tau_2 .
\phi(v_1,v_2)$ to indicate ``the pairs of values $v_1$ ($\in \tau_1$) and
$v_2$ ($\in \tau_2$) such that $\phi(v_1,v_2)$ holds''. Strings of
quantifiers are represented $Q_{\phi} Q'_{\phi'}$ etc. There is not
necessarily a dot between quantifiers or between the quantifiers and
quantified formula.
%>>>
\section{Basics} % <<<
\paragraph{}
%
A \defn{category} $\mathbf{C}$ (\S3.1) is a quadruple
$(\mathcal{O},\mbox{hom},id,\circ)$ with
\begin{itemize}
\item A collection of objects $\mathcal{O}$
\item For each pair of objects $A,B$, a (disjoint) collection of arrows
from \defn{domain} $A$ to \defn{codomain} $B$,
$\mbox{hom}(A,B)$ (also written $\mathbf{C}(A,B)$).
\item An associative arrow composition operator $\circ$.
\item Identity arrows ($id_A$) on each object $A$, unit of $\circ$
\end{itemize}
\paragraph{}
%
Categories may be described (Awodey:p21) as
\[\xymatrix{ C_2 \ar[r]^\circ & C_1 \ar@<2ex>[r]_{cod} \ar@<-2ex>[r]_{dom} & C_0 \ar[l]^i }\]
\paragraph{}
%
A category is (Awodey:p24-25,D1.11-12)\dots
\begin{itemize}
\item \defn{small} if $C_0$ and $C_1$ are sets and \defn{large} otherwise.
\item \defn{locally small} if $\forall_{X,Y \in C_0} \mbox{hom}_C(X,Y) \subseteq C_1$ is a set.
\end{itemize}
\paragraph{}
%
A predicate $P$ is \defn{essentially unique} (\S7.3) if it is unique up to
isomorphism:
\begin{itemize}
\item If both $PA$ and $PB$, then $A \simeq B$
\item If $PA$ and $A \simeq B$, then $PB$.
\end{itemize}
\paragraph{}
%
$\mathbf{B}$ is a \defn{subcategory} of $\mathbf{A}$ if it has
subcollections of objects and morphisms with identical composition and
identity (\S4.1.1). $\mathbf{B}$ is additionally \dots
\begin{itemize}
\item \defn[fullcat]{full} if it has all morphisms from $\mathbf{A}$
between objects in $\mathbf{B}$. (\S4.1.2)
\item \defn{reflective} if each $B$ has an $\mathbf{A}$-reflection. (\S4.16.2)
\xrdefn{reflection}
\end{itemize}
\paragraph{}
%
A category is$\dots$
\begin{itemize}
\item \defn{balanced} if all bi are iso (\S7.49.2)
\item \defn{discrete} if all morphisms are identities. (\S3.26.1)
\item \defn{thin} if $\forall_{A,B} \mbox{hom}(A,B) \simeq \set{*}$. (\S3.26.2)
\end{itemize}
% >>>
\section{Derived Categories} % <<<
\paragraph{}
%
The \defn{arrow} (Awodey:p16,i3) category $\mathbf{C}^\to$ has arrows for
commutative squares in $\mathbf{C}$. There are two functors
$\mathbf{cod}, \mathbf{dom} : \mathbf{C}^\to \to \mathbf{C}$.
\paragraph{}
%
The \defn[conecat]{cone} category over a given diagram,
$\mathbf{Cone}(D(J))$, has as objects \hrdefn[cone]{cones} to that diagram
and a morphism between cones is an arrow $\phi : C \to C'$ s.t.
$\forall_{D_j \in D(J)} c_j^\prime \circ \phi = c_j$.
\paragraph{}
%
The \defn{dual} (\S3.5;Awodey:p15,i2) category $\mathbf{A}^\text{op}$
which exchanges domains and codomains of arrows in $\mathbf{A}$. Any
purely-categorical statement implies its dual.
\paragraph{}
%
The \defn{slice} (Awodey:p16,i4) category $\mathbf{C}/C$ has objects of
arrows in $\mathbf{C}$ with codomain $C$. Arrows are tops of commutative
triangles.
% >>>
\section{Object Properties} % <<<
\paragraph{}
%
$C$ is a \defn{coseparator} if $\forall_{f,g : B \to A} f \ne g
\Rightarrow \exists_{h : A \to C} . h \circ f \ne h \circ g$. (\S7.17)
(Contrast \hrdefn{monomorphism}.)
% \paragraph{}
% %
% The \defn{end} of a diagonal profunctor $S : \mathbf{A}^\text{op} \times
% \mathbf{A} \to \mathbf{B}$ is the object
\paragraph{}
%
An object $0$ is \defn{initial} if $\forall_B \exists! f_B : 0 \to B$.
(\S7.1)
\paragraph{}
%
A \defn{limit} (Awodey:D5.16) of a diagram $D(J)$ is a terminal object in
the category $\mathbf{Cone}(D(J))$. Written: $c_i : (\varprojlim_{j} D_j)
\to D_i$. A \defn{colimit} (Awodey:\S5.6) is an initial object in the
category of cocones; $c_i : D_i \to (\varinjlim_j D_j)$. \xrdefn{cone}
\paragraph{}
%
$(A \times B,\pi_1,\pi_2)$ is a \defn{product} iff (UMP)
\[\xymatrix{
{}\save[]+<-1cm,0cm>*\txt<8pc>{$\forall_{Z,z_1,z_2} \exists!_u$\\$u\pi_1 = z_1 ~\wedge~ u\pi_2 = z_2$}\restore
& & Z \ar[dl]_{z_1} \ar[dr]^{z_2} \ar@{..>}[d]^u & \\
& A & \ar[l]_{\pi_1} A \times B \ar[r]^{\pi_2} & B \\
}\]
\paragraph{}
%
The \defn{product category} $\mathbf{C} \times \mathbf{D}$ of two
categories $\mathbf{C}$ and $\mathbf{D}$ consists of objects which are
each an ordered pair of an object from $\mathbf{C}$ and one from
$\mathbf{D}$; morphisms are, similarly, pairs of morphisms from
$\mathbf{C}$ and $\mathbf{D}$. This sense of $\times$ is itself the
trivial \hrdefn{bifunctor}.
\paragraph{}
%
$(P,p_1,p_2)$ is a \defn{pullback} (Awodey:p80,D5.4) of $f,g$ iff (UMP)
\[\xymatrix{
{}\save[]+<-1cm,0cm>*\txt<8pc>{$\forall_{Z,z_1,z_2 . fz_1 = gz_2}\exists!_u$\\$z_1 = p_1u ~\wedge~ z_2 = p_2u$}\restore
& Z \ar[dr]_{z_2} \ar@/^1pc/[rr]_{z_1} \ar@{..>}[r]_u & P \ar[d]^{p_1} \ar[r]_{p_2} & B \ar[d]^g \\
& & A \ar[r]^f & C
}\]
$P$ may be denoted $A \times_C B$ when $f,g$ are clear.
\paragraph{}
%
$S$ is a \defn{separator} if $\forall_{f,g : A \to B} f \ne g
\Rightarrow \exists_{h : S \to A} . f \circ h \ne g \circ h$. (\S7.10)
(Contrast \hrdefn{epimorphism}.)
$S$ is a separator iff $\mbox{hom}(S,-)$ is faithful. (\S7.12)
\paragraph{}
%
A set of objects $\mathcal{T}$ is a \defn{separating set} if
$\forall_{f,g : A \to B} f \ne g \Rightarrow \exists{S \in \mathcal{T},
h : S \to A} . f \circ h \ne g \circ h$. (\S7.14)
\paragraph{}
%
An object $1$ is \defn{terminal} if $\forall_A \exists! f_A : A \to 1$.
(\S7.4)
\paragraph{}
%
An object that is both initial and terminal is called a \defn{zero}.
(\S7.7) \xrex{mon0}
% >>>
\section{Arrow Properties} % <<<
\paragraph{}
$(Q,q)$ is a \defn{coequalizer} (\S7.51) of $f,g$ iff (UMP) $qf = qg$ and
\[\forall_{Z,z . zf = zg} \exists!_u uq = z \quad
\xymatrix{
Z & Q \ar@{..>}[l]^u & B \ar[l]^q \ar@/^1pc/[ll]^{z} & A \ar@<1ex>[l]^f \ar@<-1ex>[l]_g
}\]
Coequalizers are essentially unique (\S7.70.1) and epic (\S7.71,\S7.75.2).
\xrex{setcoeq}
\paragraph{}
%
$e$ is an \defn{epimorphism} (\S7.39) (the dual of a monomorphism)
(equiv: is \defn{epic} (Awodey:D2.1)) if
%
\[\xymatrix{\forall_{i,j} ie = je \Rightarrow i = j & A \ar@{->>}[r]^e & B \ar@<1ex>[r]^{i} \ar@<-1ex>[r]_j & C} \]
%
If $f$ and $g$ are epis, then so is $g \circ f$; if $g \circ f$ is epi,
then so is $g$. (\S7.41) \xrex{setmonepi}
\paragraph{}
%
$(E,e)$ is an \defn{equalizer} (\S7.51) of $f,g$ iff (UMP) $fe = ge$ and
\[\forall_{Z,z . fz = gz} \exists!_u eu = z \quad
\xymatrix{
Z \ar@{..>}[r]^u \ar@/_1pc/[rr]^{z} & E \ar[r]^e & A \ar@<1ex>[r]^f \ar@<-1ex>[r]_g & B \\
}\]
Equalizers are essentially unique (\S7.53) and monic (\S7.56,\S7.59.2).
\xrex{seteq}
\paragraph{}
%
A mono $m$ is a \defn{extremal} (\S7.61) if $e$ epic and
$m = f \circ e$ implies that $e$ iso.
\paragraph{}
%
Let $G: \mathbf{A} \to \mathbf{B}$ and $B \in \mathbf{B}$. A
\defn[gstrarr]<@G-structured arrow with domain B> {$G$-structured arrow
with domain $B$} is a pair $(f : B \to GA, A)$. (\S8.30) It is
%
\begin{itemize}
%
\item \defn{generating} if $\forall_{r,s : A \to A'} Gr \circ f = Gs
\circ f \implies r = s$
%
\item \defn{extremally generating} if it is generating and $\forall_{m :
A' \to A, m ~\text{mono}, (g,A')} f = Gm \circ g \implies m ~\text{iso}$.
%
\item \defn[gunivarr]<@G-universal for B>{$G$-universal for $B$} if
$\forall_{(f', A')}
%
\exists!_{\check f} f' = G{\check f} \circ f$. That is,
\[\xymatrix{
B \ar[r]^f \ar@/_1.25pc/[rr]^{f'}
& GA \ar@{.>}[r]^{G{\check f}}
& GA'
& A \ar@{.>}[r]^{\check f}
& A'
}\]
\end{itemize}
When $G$ is a subcategory inclusion, a $G$-structured universal arrow is
a \defn{reflection} (\S4.16).
\paragraph{}
%
$f : A \to B$ is an \defn{isomorphism} if $\exists!_g . f \circ g = id_B
~\wedge~ g \circ f = id_A$. (\S3.8; ! in \S3.11). Every isomorphism
is both monic and epic (Awodey:P2.6).
\paragraph{}
%
$f$ is a \defn{monomorphism} (\S7.32) (equiv: is \defn{monic}
(Awodey:D2.1)) if
\[\xymatrix{\forall_{i,j} mi = mj \Rightarrow i = j & C \ar@<1ex>[r]^{i} \ar@<-1ex>[r]_j & A \ar@{{ >}->}[r]^m & B} \]
If $f$ and $g$ are monos, then so is $g \circ f$; if $g \circ f$ is mono,
then so is $f$. (\S7.34) Objects with monomorphisms to $X$ are called
\defn{subobjects} of $X$ (Awodey:D5.1). \xrex{setmonepi}
\paragraph{}
%
A \defn{point} (Awodey:p32) of $C$ is any $c : 1 \to C$. \xrex{monpt}
\paragraph{}
%
$f$ is a \defn{regular monomorphism} (\S7.56) if it is an equalizer of
some pair of morphisms.
\paragraph{}
%
$f : A \to B$ is a \defn{retraction} if $\exists_g . f \circ g = 1_B$
(\S7.24) aka \defn{split epi} (Awodey:D2.7). If $f$ and $g$ are
retractions, then so is $g \circ f$; if $g \circ f$ is a retraction, then
so is $g$. (\S7.27)
\paragraph{}
%
$f : A \to B$ is a \defn{section} if $\exists_g . g \circ f = 1_A$.
(\S7.19) aka \defn{split mono} (Awodey:D2.7).
If $f$ and $g$ are sections, then so is $g \circ f$;
if $g \circ f$ is a section, then so is $f$. (\S7.21)
\paragraph{}
%
Several morphism properties combine in useful ways:
\begin{itemize}
\item mono, epi $\Rightarrow$ \defn{bimorphism} (\S7.49) \xrex{monbi}
\item section $\Rightarrow$ regular mono (\S7.35, \S7.59.1)
\item regular mono $\Rightarrow$ extremal mono (\S7.59.2, \S7.63)
\item retraction $\Rightarrow$ epi (\S7.42)
\item mono, retraction $\Leftrightarrow$ isomorphism (\S7.36)
\item section, epi $\Leftrightarrow$ isomorphism (\S7.43)
\end{itemize}
%(XXX stopped around \S7.60; there's more to be said)
% >>>
\section{Exponentials} % <<<
\paragraph{}
%
(Awodey:p107,D6.1) In a category with binary products, given two objects $B$ and $C$,
their \defn{exponential} is an object $C^B$ and arrow $\epsilon : C^B \times B \to C$
s.t.
\[\xymatrix{
{}\save[]+<-1cm,0cm>*\txt<8pc>{$\forall_{A,f : A \times B \to C}\exists!_{\tilde f : A \to C^B}$\\
$\epsilon \circ (\tilde f \times 1_B) = f$}\restore
& C^B & C^B \times B \ar[r]^\epsilon & C \\
& A \ar@{..>}[u]^{\tilde f} & A \times B \ar@{..>}[u]^{\tilde f \times 1_B} \ar[ur]_f
}\]
The arrows $f$ and $\tilde f$ are ``exponential transposes.''
\paragraph{}
%
Exponential transposition is self inverse (Awodey:p108). This implies
\[ \mbox{hom}_{\mathbf{C}}(A \times B, C) \simeq \mbox{hom}_{\mathbf{C}}(A, C^B) \]
\paragraph{}
%
The \defn{exponential category} $\mathbf{D}^\mathbf{C}$ has as objects
\hrdefn[functor]{functors} from $\mathbf{C}$ to $\mathbf{D}$ and as
morphisms the \hrdefn[nattrans]{natural transformations} between these
functors.
\paragraph{}
%
A category is \defn{cartesian closed} (Awodey:p108,D6.2) if it has all
finite products and exponentials.
% >>>
\section{Functors} % <<<
% Basics <<<
\paragraph{}
%
Default notation here: functors $F,G : \mathbf{A} \to \mathbf{B}$.
\paragraph{}
%
A \defn{covariant functor} (or just \defn{functor}) $F$
(\S3.17;Awodey:D1.2) assigns to each $\mathbf{A}$-object a
$\mathbf{B}$-object and to each $\mathbf{A}$-morphism a
$\mathbf{B}$-morphism s.t. composition and identites are {\em preserved}.
\paragraph{}
%
A \defn[contrafunc]{contravariant functor} $F$ (\S3.20.5) is a (covariant) functor
$\mathbf{A}^\text{op} \to \mathbf{B}$.
\paragraph{}
%
A \defn{diagram} (Awodey:D5.15) is a functor $D : J \to C$ from some
indexing category $J$.
\paragraph{}
%
A \defn{endofunctor} has $\mathbf{A} = \mathbf{B}$. $F \circ F$ may be
denoted $F^2$, etc. (\S3.23; ftn 15)
\paragraph{}
%
Functors compose. (\S3.23)
% XXX Cite
\paragraph{}
%
A functor $F : C \to D$\dots
\begin{itemize}
\item \defn[fpresvlim]{preserves limits of type $J$} if
\[ \forall_{D : J \to C}\forall_{\varprojlim_j D_j} F(\varprojlim_j D_j) \simeq \varprojlim_j F(D_j).\]
\item \defn[fcreatlim]{creates limits of type $J$} if $\forall_{D : J \to C}$
and all limits $L = \varprojlim_j FD_j$ (i.e., bundle $p_j : L \to FD_j$ in $C'$),
$\exists! (\bar{p_j} : \bar{L} \to D_j) \in C'$ with $F(\bar L) = L$, $F(\bar{p_j}) = p_j$,
and $\bar L = \varprojlim_j D_j$.
\end{itemize}
\paragraph{}
%
A (covariant) \defn{bifunctor} is a functor from a \hrdefn{product
category} such that each partial application is {\em also} a functor.
(See \cite{hinze:f} and bifunctors.tex for more.) A \defn{profunctor} is a
bifunctor which is \hrdefn[contrafunc]{contravariant} in one argument and
covariant in the other.
\paragraph{}
%
A functor $F$ is (\S3.27, \S3.33)
\begin{itemize}
\item \defn{amnestic} if $f$ is an identity iff $Ff$ is an identity.
\item \defn{continuous} if it preserves all limits. (Awodey:D5.24)
\item an \defn{equivalence} if it is full, faithful, and
isomorphism-dense.
\item an \defn{embedding} if it is injective on morphisms.
\item \defn{faithful} if $\forall_{A,A'} F\vert_{\mathbf{A}(A,A')}
\subseteq \mathbf{B}(FA, FA')$ is injective.
\item \defn[fullfunc]{full} if $\forall_{A,A'} F\vert_{\mathbf{A}(A,A')}$ surjective.
\item \defn{isomorphism-dense} if $\forall_B \exists_A . F(A) \simeq B$.
\end{itemize}
\paragraph{}
%
All functors \defn{preserve} (in $\mathbf{A}$ implies in $\mathbf{B}$)
isomorphisms (\S3.21), sections (\S7.22), and retractions (\S7.28).
\paragraph{}
%
Some functors \defn{reflect} (in $\mathbf{B}$ implies in $\mathbf{A}$) useful properties:
\begin{itemize}
\item Full, faithful functors reflect sections (\S7.23) and retractions (\S7.29).
\item Faithful functors reflect monos (\S7.37.2) and epis (\S7.44).
\end{itemize}
% >>>
\subsection{Transformations} % <<<
\paragraph{}
%
A \defn[nattrans]{natural transformation} $\tau : F \natto G$ assigns each
$A \in \mathbf{A}$ to $\tau_A : FA \to GA$ s.t.
$\forall_{f : A \to A'} G f \circ \tau_A = \tau_{A'} \circ F f$
(\S6.1;Awodey:D7.6).
That is,
%
\[\xymatrix{
{}\save[]+<-1cm,0cm>*\txt<8pc>{$\forall_{A,B,f \in C}$\\$Gf\circ \tau_A = \tau_B\circ Ff$}\restore
& FA \ar[r]^{\tau_A} \ar[d]_{Ff} & GA \ar[d]^{Gf} \\
& FB \ar[r]^{\tau_B} & GB} \]
%
More generally, given any functor from a \hrdefn{product category}, we may
say that it is natural in the $i$-th position if, for all ways of fixing
the other positions, the resulting partial applications form natural
transformations.
\paragraph{}
%
There is special notation for functors ($H$) applied to natural
transformations and vice-versa (\S6.3): $H\tau : HF \natto HG$ defined by
$(H\tau)_A = H(\tau_A)$ and $\tau H : FH \natto GH$ defined by $(\tau H)_A
= \tau_{HA}$.
% XXX Not yet
% \paragraph{}
% %
% A \defn[exttrans]{extranatural transformation} is one where
%
% \paragraph{}
% %
% A \defn[dinat]{dinatural transform} is
% >>>
\subsection{Special Functors} % <<<
\paragraph{}
%
For every category $\mathbf{C}$ and object $D \in \mathbf{D}$ there is
a unique \defn{constant functor} $\mathbf{!}_D$ which sends every
$C$ to $D$ and every $f$ to $1_D$.
\paragraph{}
%
The \defn{covariant representable functor} (Awodey:p44) at $A \in
\mathbf{C}$ is defined by $\mbox{Hom}(A,\text{---}) : \mathbf{C} \to
\mathbf{Sets}$. These functors are continuous (Awodey:P5.25).
\paragraph{}
%
Representable functors preserve monos. (\S7.37.1)
\paragraph{}
%
Pullback defines a functor
\[ h^* : (A \stackrel{\alpha}{\to} C) \in \mathbf{C}/C
\mapsto (C' \times_C A \stackrel{\alpha'}{\to} C') \in \mathbf{C}/C' \]
where $\alpha'$ is the pullback of $\alpha$ along $h$. (Awodey:P5.10)
% >>>
% >>>
\section{Cones and Sources} % <<<
\paragraph{}
%
A \defn{cone} (Awodey:D5.15) to a diagram $D(J)$ is a collection of arrows
$c_j : C \to D_j$ s.t. $\forall_{D_\alpha \in D(J)} c_j = D_\alpha \circ
c_i$. (Cones are also \hrdefn[nattrans]{natural
transformations} from the \hrdefn{constant functor} to the inclusion
functor of the diagram $D$. \cite{milewski:limits}) (Cones are
\hrdefn[source]{sources} subject to commutation diagrams implied by the
diagram.)
\paragraph{}
%
A \defn{source} in category $\mathbf{A}$ indexed by $I$ is a pair $(A,
\set{f_i : A \to A_i}_{i \in I})$. This source has domain $A$ and
codomain $\set{A_i}_{i\in I}$. (\S10.1)
\paragraph{}
%
Given $(A,\set{f_i}_{i \in I})$ and
$\{(A_i,\set{g_{ij}}_{j \in J_i})\}_{i \in I}$
all sources, their \defn{composite} is $(A, \set{g_{ij} \circ f_i}_{i\in I,
j\in J_i})$. (\S10.3)
\paragraph{}
%
A \defn{mono-source} (\S10.5) is $(A,\set{f_i})$ s.t. \\ $\forall r,s: B \to A
\brak{\forall_{i\in I} f_i \circ r = f_i \circ s} \Rightarrow r = s$.
% >>>
\section{Concrete Categories} % <<<
\paragraph{}
%
For this section, $\mathbf{A}$ is a \defn{concrete category} over
$\mathbf{X}$ with \defn{forgetful} \hrdefn{functor} $U : \mathbf{A} \to
\mathbf{X}$ \hrdefn{faithful}, denoted $(\mathbf{A}, U)$. (\S5.1.1)
\paragraph{}
%
When $\mathbf{A} = \mathbf{X}$, $\mathbf{Alg}(U)$ has
\hrdefn[falg]{$U$-algebras} as objects and algebra homomorphisms as
morphisms.
\paragraph{}
%
If $\mathbf{X}$ is $\mathbf{Set}$, $\mathbf{A}$ is a \defn{construct}.
(\S5.1.2)
\paragraph{}
%
$(UA \overset{f}{\to} UB) \in \mathbf{X}$ \defn[Amporphism]{is an
$\mathbf{A}$-morphism} if $f$ has an {\em unique} $U$-preimage in
$\mathbf{A}$. (\S5.3, \S6.22)
%An object $A\in\mathbf{A}$ is
%\dots\! if $\forall_{B \in \mathbf{A}}$, \dots is an $\mathbf{A}$ arrow.
%\begin{itemize}
% \item \defn{discrete}, $(UA \to UB)$ (\S8.1)
% \item \defn{indiscrete}, $(UB \to UA)$ (\S8.3)
%\end{itemize}
\paragraph{}
%
A \defn{free object} $A \in \mathbf{A}$ is one with a ($U$-structured)
universal arrow $(u,UA)$ in $B$. (\S8.22+\S8.30) \xrdefn{gunivarr}
%$f \in \mathbf{A}$ is \defn{initial} if $\forall_{C \in \mathbf{A}}$ $UC
%\overset{f \circ g}{\to} UB$ is an $\mathbf{A}$-morphism implies that $UC
%\overset{g}{\to} UA$ is an $\mathbf{A}$-morphism.
% >>>
\section{Adjoints and Adjoint Situations} % <<<
\label{sec:adj}
Be sure to see \autoref{sec:adjex} for examples.
\subsection{Joy Approach}
\paragraph{}
%
A functor $G : \mathbf{A} \to \mathbf{B}$ is \defn{adjoint} if
$\forall_{B \in \mathbf{B}}$ there exists a $G$-structured universal
arrow with domain $B$. (\S18.1) \xrdefn{gunivarr}
\paragraph{}
%
Adjoints compose (\S8.5), preserve \hrdefn[mono-source]{mono-sources}
(\S8.6), and preserve \hrdefn[limit]{limits} (\S8.9)
\paragraph{}
%
Given adjoint $G$ with $\eta_B : B \to G(A_B)$ the $G$-structured
universal arrow with domain $B$, $\exists!_F$ such that $FB = A_B$ and
$\eta : id_B \natto G \circ F$ is natural; further, there is a unique,
natural $\epsilon : F \circ G \natto id_A$ with $G\epsilon \circ \eta G =
id_G$ and $\epsilon F \circ F \eta = id_F$. (\S19.1)
\paragraph{}
%
$(\eta,\epsilon) : F \dashv G : \mathbf{A} \to \mathbf{B}$ is a
\defn{adjoint situation} if the above relationships hold. (\S19.7)
\subsection{Awodey Approach}
\paragraph{}
%
An \defn{adjunction} (Awodey:D9.1) of $F : C \to D$ and $G : D \to C$ is a
\hrdefn[nattrans]{natural transformation} $\eta : I_C
\stackrel{\cdot}{\to} (G\circ F)$ s.t.
%
\[\xymatrix{
{}\save[]+<-1cm,0cm>*\txt<8pc>{$\forall_{f:X \to GY}\exists!_{f^\#:FX\to Y}$\\
$f = Gf^\# \circ \eta_X$}\restore
& FX\ar@{..>}[d]^{f^\#} & X \ar[dr]^f \ar[r]^{\eta_X} & GFX \ar@{..>}[d]^{Gf^\#} \\
& Y & & GY
}\]
%
Equivalently (Awodey:D9.7), a natural {\em isomorphism}
%
\[ \phi : \mbox{Hom}_D(FC,D) \simeq \mbox{Hom}_C(C,GD),
\quad \eta_X = \phi(1_{FX}) \]
\subsection{Moving Right Along}
\paragraph{}
%
A \defn{monad} (\S20.1) on $\mathbf{X}$ is $(T : \mathbf{X} \to \mathbf{X},
\eta : id_{\mathbf{X}} \natto T, \mu : T^2 \natto T)$ s.t.
\[\forall_X \quad
\xymatrix@R=10pt{
T^3X \ar[r]^{T(\mu_X)} \ar[d]^{\mu_{TX}} & T^2X \ar[d]^{\mu_{X}} \\
T^2X \ar[r]^{\mu_X} & TX
} \quad \xymatrix@R=10pt{
TX \ar[r]^{T(\eta_X)} \ar[dr]_{id_{TX}} & T^2X \ar[d]^{\mu_X} & TX \ar[l]_{\eta_{TX}} \ar[dl]^{id_{TX}} \\
& TX &
}\]
% >>>
\appendix
\section{Miscellaneous Terminology} % <<<
\paragraph{}
%
Given an \hrdefn{endofunctor} $F$ on $\mathbf{C}$, a
\defn[falg]<@F-algebra>{$F$-algebra} is a pair of a \defn{carrier} $X \in
\mathbf{C}$ and interpretation morphism $h : FX \to X \in \mathbf{C}$. A
\defn{algebra homomorphism} is a morphism $f$ such that $f : (X,h) \to
(X',h')$ s.t. $f \circ h = h' \circ T(f)$. (\S5.37)
\paragraph{}
%
A category is \defn{finitely presented} (Awodey:p75) if it is the free
category over a finite graph quotiented by a finite set of equations.
\paragraph{}
%
The \defn{local membership relation} for generalized element $z : Z \to C$
and subobject $M$ (i.e., with monic $m : M \to C$), $z \in_X M$, holds iff
$\exists_{f:Z \to M} . z = mf$.
\paragraph{}
%
An \defn[wCPO]<@w-complete Partial Order>{$\omega$-complete Partial Order}
($\omega$CPO) is a Poset which has all {\em co}limits of type
$(\mathbb{N},\le)$. (All countably infinite ascending chains have a top.)
(Awodey:p101,E5.33)
% >>>
\section{Miscellaneous Useful Properties} % <<<
\paragraph{}
%
(Awodey:p84,L5.8) In the commuting diagram
\[\xymatrix{ F \ar[r]_{f'} \ar[d]^{h''} & E \ar[r]_{g'} \ar[d]^{h'} & D \ar[d]^{h} \\
A \ar[r]^f & B \ar[r]^g & C
}\]
\begin{enumerate}
\item If $FEBA$ and $EDCB$ are pullbacks, so is $FDCA$.
\item If $FDCA$ and $EDCB$ are pullbacks, so is $FEBA$.
\end{enumerate}
\paragraph{}
%
(Awodey:p84,C5.9) Pullbacks preserve commutative triangles.
\paragraph{}
%
Universal Constructions (or Universal Mapping Properties, UMP) reduce to
limits (Awodey:p91,E5.17-20):
%
\begin{tabular}{|c|c|c|c|}
\hline
terminals & products & equalizers & pullbacks \\
%
\hline
& $\xymatrix@C5pt{x & y}$
& $\xymatrix{x \ar@<1ex>[r]^{\alpha} \ar@<-1ex>[r]_{\beta} & y}$
& $\xymatrix@C5pt@R5pt{& x \ar[d] \\ y \ar[r] & z}$\\
\hline
\end{tabular}
\paragraph{}
%
Objects defined by UCs are unique up to isomorphism.
% >>>
\section{Examples To Jog Your Memory} % <<<
\subsection{$\mathbf{Set}$}
\paragraph{}\label{ex:setmonepi}
%
\hrdefn[epic]{Epic} is surjective, \hrdefn{monic} is injective.
\paragraph{}\label{ex:setcoeq}
%
\hrdefn[coequalizer]{Coequalizers} correspond to equivalence classes
(\S7.69.1): Let $\sim$ be {\em the smallest} eq. rel. s.t. $\forall_{a \in
A} f(a) \sim g(a)$; then $(Q,q) = (B/\sim, b \mapsto \brak{b}_\sim)$ is a
coequalizer of $f$ and $g$.
\paragraph{}\label{ex:seteq}
%
\hrdefn[equalizer]{Equalizers}: $(E,e) = (\set{x \mid f(x) = g(x)} \subseteq X, \subseteq)$.
\subsection{$\mathbf{Mon}$}
\paragraph{}\label{ex:monbi}
%
\hrdefn[bimorphism]{Bimorphisms} are not isos: ($(\mathbf{N},+,0) \to
(\mathbf{Z},+,0)$). (Pierce:\S1.6.3)
\paragraph{}\label{ex:mon0}
%
$(\set{*},\cdot,*)$ is a (the) \hrdefn{zero}.
\paragraph{}\label{ex:monpt}
%
Each monoid $M$ has only one \hrdefn{point}, $1 \to M$.
\subsection{Adjoint Situations and Monads}
\label{sec:adjex}
Defintitons in \autoref{sec:adj}.
\paragraph{}
%
Consider $(\eta, \epsilon) : F \dashv G : \mathbf{Mon} \to \mathbf{Set}$.
$\eta_X : X \to GFX$ is insertion of generators: $\forall x \in X \eta_X x = x$.
$\epsilon_Y : FGY \to Y$ is the re-introduction of structure;
if $FGY = ((GY)^*, \cdot, \varepsilon)$ and $Y = (GY, +, 0)$ then
\[ \epsilon_Y \varepsilon = 0
\quad \epsilon_Y (y \cdot z) = y + z
\quad \epsilon_Y (y \in GY) = y
\]
\paragraph{}
%
Further, $T = G \circ F$ is a monad. Generically, $\mu$...
\begin{align*}
\mu_X (TTX) &= (G \epsilon F)_X (TTX) = (G \epsilon_{FX}) (GFGFX) \\
&= G ((\epsilon_{FX})(FGFX)) = GFX
\end{align*}
So here $\mu$ is the $G$-image of a function which takes $y \in FGFX =
F(X^*)$ (that is, a concatenation of symbols from $GFX$) and re-imposes
structure to obtain $\epsilon_{FX} y \in FX$.
% >>>
\section{Bootstrapping Category Theory} % <<<
\paragraph{}
%
\defn[catcat]<@Cat>{$\mathbf{Cat}$} is the category which has locally
small categories as objects and \hrdefn[functor]{functors} as morphisms.
(It is not, itself, locally small, and so is not an object in itself.)
$\mathbf{Cat}$ is \hrdefn{cartesian closed} (see \hrdefn{product category}
and \hrdefn{exponential category}). Its initial object is the empty
category and its terminal object is the category of a single object and
its identity morphism.
% >>>
% Footer <<<
\printindex
\bibliographystyle{alphaurl}
\bibliography{ctcheat}
\end{document}
% vim: ai:expandtab:ts=4:foldmethod=marker:foldmarker=<<<,>>>
% >>>