-
Notifications
You must be signed in to change notification settings - Fork 52
/
metrics.py
41 lines (34 loc) · 1.56 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
''' This script defines custom metrics and loss functions.
The Adaptive Max-Pool Loss acts as a weighting function that multiplies a
loss value with the maximum loss values within an NxN neighborhood.
An earlier version of this loss function described in:
F. Isikdogan, A.C. Bovik, and P. Passalacqua,
"Learning a River Network Extractor using an Adaptive Loss Function,"
IEEE Geoscience and Remote Sensing Letters, 2018.
'''
import tensorflow as tf
from tensorflow.keras import backend as K
import numpy as np
def running_recall(y_true, y_pred):
TP = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
TP_FN = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = TP / (TP_FN + K.epsilon())
return recall
def running_precision(y_true, y_pred):
TP = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
TP_FP = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = TP / (TP_FP + K.epsilon())
return precision
def running_f1(y_true, y_pred):
precision = running_precision(y_true, y_pred)
recall = running_recall(y_true, y_pred)
return 2 * ((precision * recall) / (precision + recall + K.epsilon()))
def adaptive_maxpool_loss(y_true, y_pred, alpha=0.25):
y_pred = K.clip(y_pred, K.epsilon(), 1. - K.epsilon())
positive = -y_true * K.log(y_pred) * alpha
negative = -(1. - y_true) * K.log(1. - y_pred) * (1-alpha)
pointwise_loss = positive + negative
max_loss = tf.keras.layers.MaxPool2D(pool_size=8, strides=1, padding='same')(pointwise_loss)
x = pointwise_loss * max_loss
x = K.mean(x, axis=-1)
return x