-
Notifications
You must be signed in to change notification settings - Fork 7
/
train_synthia2cityscapes_multi.py
412 lines (324 loc) · 16.7 KB
/
train_synthia2cityscapes_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import argparse
import torch
import torch.nn as nn
from torch.utils import data, model_zoo
import numpy as np
import pickle
from torch.autograd import Variable
import torch.optim as optim
import scipy.misc
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import sys
import os
import os.path as osp
import matplotlib.pyplot as plt
import random
from model.deeplab_multi import Res_Deeplab
from model.discriminator import FCDiscriminator
from utils.loss import CrossEntropy2d
from dataset.gta5_dataset import GTA5DataSet
from dataset.synthia_dataset import SynthiaDataSet
from dataset.cityscapes_dataset import cityscapesDataSet
IMG_MEAN = np.array((104.00698793, 116.66876762, 122.67891434), dtype=np.float32)
MODEL = 'DeepLab'
BATCH_SIZE = 1
ITER_SIZE = 1
NUM_WORKERS = 6
DATA_DIRECTORY = './SYNTHIA'
DATA_LIST_PATH = "./dataset/synthia_list/train.txt"
IGNORE_LABEL = 255
INPUT_SIZE = '1280,720'
DATA_DIRECTORY_TARGET = './Cityscape'
DATA_LIST_PATH_TARGET = './dataset/cityscapes_list/train.txt'
INPUT_SIZE_TARGET = '1024,512'
LEARNING_RATE = 2.5e-4
MOMENTUM = 0.9
NUM_CLASSES = 19
NUM_STEPS = 250000
NUM_STEPS_STOP = 80000 # early stopping
POWER = 0.9
RANDOM_SEED = 1234
RESTORE_FROM = './weights/DeepLab_resnet_pretrained_init-f81d91e8.pth'
SAVE_NUM_IMAGES = 2
SAVE_PRED_EVERY = 5000
SNAPSHOT_DIR = './snapshots/'
WEIGHT_DECAY = 0.0005
LEARNING_RATE_D = 1e-4
LAMBDA_SEG = 0.1
LAMBDA_ADV_TARGET1 = 0.0002
LAMBDA_ADV_TARGET2 = 0.001
TARGET = 'cityscapes'
SET = 'train'
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="DeepLab-ResNet Network")
parser.add_argument("--model", type=str, default=MODEL,
help="available options : DeepLab")
parser.add_argument("--target", type=str, default=TARGET,
help="available options : cityscapes")
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
help="Number of images sent to the network in one step.")
parser.add_argument("--iter-size", type=int, default=ITER_SIZE,
help="Accumulate gradients for ITER_SIZE iterations.")
parser.add_argument("--num-workers", type=int, default=NUM_WORKERS,
help="number of workers for multithread dataloading.")
parser.add_argument("--data-dir", type=str, default=DATA_DIRECTORY,
help="Path to the directory containing the source dataset.")
parser.add_argument("--data-list", type=str, default=DATA_LIST_PATH,
help="Path to the file listing the images in the source dataset.")
parser.add_argument("--ignore-label", type=int, default=IGNORE_LABEL,
help="The index of the label to ignore during the training.")
parser.add_argument("--input-size", type=str, default=INPUT_SIZE,
help="Comma-separated string with height and width of source images.")
parser.add_argument("--data-dir-target", type=str, default=DATA_DIRECTORY_TARGET,
help="Path to the directory containing the target dataset.")
parser.add_argument("--data-list-target", type=str, default=DATA_LIST_PATH_TARGET,
help="Path to the file listing the images in the target dataset.")
parser.add_argument("--input-size-target", type=str, default=INPUT_SIZE_TARGET,
help="Comma-separated string with height and width of target images.")
parser.add_argument("--is-training", action="store_true",
help="Whether to updates the running means and variances during the training.")
parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE,
help="Base learning rate for training with polynomial decay.")
parser.add_argument("--learning-rate-D", type=float, default=LEARNING_RATE_D,
help="Base learning rate for discriminator.")
parser.add_argument("--lambda-seg", type=float, default=LAMBDA_SEG,
help="lambda_seg.")
parser.add_argument("--lambda-adv-target1", type=float, default=LAMBDA_ADV_TARGET1,
help="lambda_adv for adversarial training.")
parser.add_argument("--lambda-adv-target2", type=float, default=LAMBDA_ADV_TARGET2,
help="lambda_adv for adversarial training.")
parser.add_argument("--momentum", type=float, default=MOMENTUM,
help="Momentum component of the optimiser.")
parser.add_argument("--not-restore-last", action="store_true",
help="Whether to not restore last (FC) layers.")
parser.add_argument("--num-classes", type=int, default=NUM_CLASSES,
help="Number of classes to predict (including background).")
parser.add_argument("--num-steps", type=int, default=NUM_STEPS,
help="Number of training steps.")
parser.add_argument("--num-steps-stop", type=int, default=NUM_STEPS_STOP,
help="Number of training steps for early stopping.")
parser.add_argument("--power", type=float, default=POWER,
help="Decay parameter to compute the learning rate.")
parser.add_argument("--random-mirror", action="store_true",
help="Whether to randomly mirror the inputs during the training.")
parser.add_argument("--random-scale", action="store_true",
help="Whether to randomly scale the inputs during the training.")
parser.add_argument("--random-seed", type=int, default=RANDOM_SEED,
help="Random seed to have reproducible results.")
parser.add_argument("--restore-from", type=str, default=RESTORE_FROM,
help="Where restore model parameters from.")
parser.add_argument("--save-num-images", type=int, default=SAVE_NUM_IMAGES,
help="How many images to save.")
parser.add_argument("--save-pred-every", type=int, default=SAVE_PRED_EVERY,
help="Save summaries and checkpoint every often.")
parser.add_argument("--snapshot-dir", type=str, default=SNAPSHOT_DIR,
help="Where to save snapshots of the model.")
parser.add_argument("--weight-decay", type=float, default=WEIGHT_DECAY,
help="Regularisation parameter for L2-loss.")
parser.add_argument("--gpu", type=int, default=0,
help="choose gpu device.")
parser.add_argument("--set", type=str, default=SET,
help="choose adaptation set.")
return parser.parse_args()
args = get_arguments()
def loss_calc(pred, label, gpu):
"""
This function returns cross entropy loss for semantic segmentation
"""
# out shape batch_size x channels x h x w -> batch_size x channels x h x w
# label shape h x w x 1 x batch_size -> batch_size x 1 x h x w
label = Variable(label.long()).cuda(gpu)
criterion = CrossEntropy2d().cuda(gpu)
return criterion(pred, label)
def lr_poly(base_lr, iter, max_iter, power):
return base_lr * ((1 - float(iter) / max_iter) ** (power))
def adjust_learning_rate(optimizer, i_iter):
lr = lr_poly(args.learning_rate, i_iter, args.num_steps, args.power)
optimizer.param_groups[0]['lr'] = lr
if len(optimizer.param_groups) > 1:
optimizer.param_groups[1]['lr'] = lr * 10
def adjust_learning_rate_D(optimizer, i_iter):
lr = lr_poly(args.learning_rate_D, i_iter, args.num_steps, args.power)
optimizer.param_groups[0]['lr'] = lr
if len(optimizer.param_groups) > 1:
optimizer.param_groups[1]['lr'] = lr * 10
def main():
"""Create the model and start the training."""
h, w = map(int, args.input_size.split(','))
input_size = (h, w)
h, w = map(int, args.input_size_target.split(','))
input_size_target = (h, w)
cudnn.enabled = True
gpu = args.gpu
# Create network
if args.model == 'DeepLab':
model = Res_Deeplab(num_classes=args.num_classes)
if args.restore_from[:4] == 'http' :
saved_state_dict = model_zoo.load_url(args.restore_from)
else:
saved_state_dict = torch.load(args.restore_from)
new_params = model.state_dict().copy()
for i in saved_state_dict:
# Scale.layer5.conv2d_list.3.weight
i_parts = i.split('.')
# print i_parts
if not args.num_classes == 19 or not i_parts[1] == 'layer5':
new_params['.'.join(i_parts[1:])] = saved_state_dict[i]
# print i_parts
model.load_state_dict(new_params)
model.train()
model.cuda(args.gpu)
cudnn.benchmark = True
# init D
model_D1 = FCDiscriminator(num_classes=args.num_classes)
model_D2 = FCDiscriminator(num_classes=args.num_classes)
model_D1.train()
model_D1.cuda(args.gpu)
model_D2.train()
model_D2.cuda(args.gpu)
if not os.path.exists(args.snapshot_dir):
os.makedirs(args.snapshot_dir)
trainloader = data.DataLoader(
SynthiaDataSet(args.data_dir, args.data_list, max_iters=args.num_steps * args.iter_size * args.batch_size,
crop_size=input_size,
scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True)
trainloader_iter = enumerate(trainloader)
targetloader = data.DataLoader(cityscapesDataSet(args.data_dir_target, args.data_list_target,
max_iters=args.num_steps * args.iter_size * args.batch_size,
crop_size=input_size_target,
scale=False, mirror=args.random_mirror, mean=IMG_MEAN,
set=args.set),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers,
pin_memory=True)
targetloader_iter = enumerate(targetloader)
# implement model.optim_parameters(args) to handle different models' lr setting
optimizer = optim.SGD(model.optim_parameters(args),
lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay)
optimizer.zero_grad()
optimizer_D1 = optim.Adam(model_D1.parameters(), lr=args.learning_rate_D, betas=(0.9, 0.99))
optimizer_D1.zero_grad()
optimizer_D2 = optim.Adam(model_D2.parameters(), lr=args.learning_rate_D, betas=(0.9, 0.99))
optimizer_D2.zero_grad()
bce_loss = torch.nn.BCEWithLogitsLoss()
interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear')
interp_target = nn.Upsample(size=(input_size_target[1], input_size_target[0]), mode='bilinear')
# labels for adversarial training
source_label = 0
target_label = 1
for i_iter in range(args.num_steps):
loss_seg_value1 = 0
loss_adv_target_value1 = 0
loss_D_value1 = 0
loss_seg_value2 = 0
loss_adv_target_value2 = 0
loss_D_value2 = 0
optimizer.zero_grad()
adjust_learning_rate(optimizer, i_iter)
optimizer_D1.zero_grad()
optimizer_D2.zero_grad()
adjust_learning_rate_D(optimizer_D1, i_iter)
adjust_learning_rate_D(optimizer_D2, i_iter)
for sub_i in range(args.iter_size):
# train G
# don't accumulate grads in D
for param in model_D1.parameters():
param.requires_grad = False
for param in model_D2.parameters():
param.requires_grad = False
# train with source
_, batch = trainloader_iter.next()
images, labels, _, _ = batch
images = Variable(images).cuda(args.gpu)
pred1, pred2 = model(images)
pred1 = interp(pred1)
pred2 = interp(pred2)
loss_seg1 = loss_calc(pred1, labels, args.gpu)
loss_seg2 = loss_calc(pred2, labels, args.gpu)
loss = loss_seg2 + args.lambda_seg * loss_seg1
# proper normalization
loss = loss / args.iter_size
loss.backward()
loss_seg_value1 += loss_seg1.data.cpu().numpy()[0] / args.iter_size
loss_seg_value2 += loss_seg2.data.cpu().numpy()[0] / args.iter_size
# train with target
_, batch = targetloader_iter.next()
images, _, _ = batch
images = Variable(images).cuda(args.gpu)
pred_target1, pred_target2 = model(images)
pred_target1 = interp_target(pred_target1)
pred_target2 = interp_target(pred_target2)
D_out1 = model_D1(F.softmax(pred_target1))
D_out2 = model_D2(F.softmax(pred_target2))
loss_adv_target1 = bce_loss(D_out1,
Variable(torch.FloatTensor(D_out1.data.size()).fill_(source_label)).cuda(
args.gpu))
loss_adv_target2 = bce_loss(D_out2,
Variable(torch.FloatTensor(D_out2.data.size()).fill_(source_label)).cuda(
args.gpu))
loss = args.lambda_adv_target1 * loss_adv_target1 + args.lambda_adv_target2 * loss_adv_target2
loss = loss / args.iter_size
loss.backward()
loss_adv_target_value1 += loss_adv_target1.data.cpu().numpy()[0] / args.iter_size
loss_adv_target_value2 += loss_adv_target2.data.cpu().numpy()[0] / args.iter_size
# train D
# bring back requires_grad
for param in model_D1.parameters():
param.requires_grad = True
for param in model_D2.parameters():
param.requires_grad = True
# train with source
pred1 = pred1.detach()
pred2 = pred2.detach()
D_out1 = model_D1(F.softmax(pred1))
D_out2 = model_D2(F.softmax(pred2))
loss_D1 = bce_loss(D_out1,
Variable(torch.FloatTensor(D_out1.data.size()).fill_(source_label)).cuda(args.gpu))
loss_D2 = bce_loss(D_out2,
Variable(torch.FloatTensor(D_out2.data.size()).fill_(source_label)).cuda(args.gpu))
loss_D1 = loss_D1 / args.iter_size / 2
loss_D2 = loss_D2 / args.iter_size / 2
loss_D1.backward()
loss_D2.backward()
loss_D_value1 += loss_D1.data.cpu().numpy()[0]
loss_D_value2 += loss_D2.data.cpu().numpy()[0]
# train with target
pred_target1 = pred_target1.detach()
pred_target2 = pred_target2.detach()
D_out1 = model_D1(F.softmax(pred_target1))
D_out2 = model_D2(F.softmax(pred_target2))
loss_D1 = bce_loss(D_out1,
Variable(torch.FloatTensor(D_out1.data.size()).fill_(target_label)).cuda(args.gpu))
loss_D2 = bce_loss(D_out2,
Variable(torch.FloatTensor(D_out2.data.size()).fill_(target_label)).cuda(args.gpu))
loss_D1 = loss_D1 / args.iter_size / 2
loss_D2 = loss_D2 / args.iter_size / 2
loss_D1.backward()
loss_D2.backward()
loss_D_value1 += loss_D1.data.cpu().numpy()[0]
loss_D_value2 += loss_D2.data.cpu().numpy()[0]
optimizer.step()
optimizer_D1.step()
optimizer_D2.step()
print('exp = {}'.format(args.snapshot_dir))
print(
'iter = {0:8d}/{1:8d}, loss_seg1 = {2:.3f} loss_seg2 = {3:.3f} loss_adv1 = {4:.3f}, loss_adv2 = {5:.3f} loss_D1 = {6:.3f} loss_D2 = {7:.3f}'.format(
i_iter, args.num_steps, loss_seg_value1, loss_seg_value2, loss_adv_target_value1, loss_adv_target_value2, loss_D_value1, loss_D_value2))
if i_iter >= args.num_steps_stop - 1:
print 'save model ...'
torch.save(model.state_dict(), osp.join(args.snapshot_dir, 'SYNTHIA_' + str(args.num_steps) + '.pth'))
torch.save(model_D1.state_dict(), osp.join(args.snapshot_dir, 'SYNTHIA_' + str(args.num_steps) + '_D1.pth'))
torch.save(model_D2.state_dict(), osp.join(args.snapshot_dir, 'SYNTHIA_' + str(args.num_steps) + '_D2.pth'))
break
if i_iter % args.save_pred_every == 0 and i_iter != 0:
print 'taking snapshot ...'
torch.save(model.state_dict(), osp.join(args.snapshot_dir, 'SYNTHIA_' + str(i_iter) + '.pth'))
torch.save(model_D1.state_dict(), osp.join(args.snapshot_dir, 'SYNTHIA_' + str(i_iter) + '_D1.pth'))
torch.save(model_D2.state_dict(), osp.join(args.snapshot_dir, 'SYNTHIA_' + str(i_iter) + '_D2.pth'))
if __name__ == '__main__':
main()