forked from carolineec/EverybodyDanceNow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_fullts.py
executable file
·49 lines (41 loc) · 1.66 KB
/
test_fullts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
### Copyright (C) 2017 NVIDIA Corporation. All rights reserved.
### Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
import time
import os
from collections import OrderedDict
from options.test_options import TestOptions
from data.data_loader import CreateDataLoader
from models.models import create_model_fullts
import util.util as util
from util.visualizer import Visualizer
from util import html
import numpy as np
import torch
opt = TestOptions().parse(save=False)
opt.nThreads = 1 # test code only supports nThreads = 1
opt.batchSize = 1 # test code only supports batchSize = 1
opt.serial_batches = True # no shuffle
opt.no_flip = True # no flip
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
model = create_model_fullts(opt)
visualizer = Visualizer(opt)
# create website
web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
# test
unset = True
print('#testing images = %d' % len(data_loader))
for i, data in enumerate(dataset):
if i >= opt.how_many:
break
if unset: #no previous results, condition on zero image
previous_cond = torch.zeros(data['label'].size())
unset = False
generated = model.inference(data['label'], previous_cond, data['face_coords'])
previous_cond = generated.data
visuals = OrderedDict([('synthesized_image', util.tensor2im(generated.data[0]))])
img_path = data['path']
print('process image... %s' % img_path)
visualizer.save_images(webpage, visuals, img_path)
webpage.save()