-
Notifications
You must be signed in to change notification settings - Fork 0
/
Constants.py
65 lines (56 loc) · 1.56 KB
/
Constants.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 31 12:29:20 2018
@author: John
"""
#set data variables
NUM_INPUTS = 4
NUM_OUTPUTS = 3
#stratify data.
#Must sum to the total number of vectors
HOLDOUT = 0
TRAINING = 120
VALIDATION = 30
#statistics variables
NUMTRIALS = 10
#set nn worker variables
WRKR_NUM_WORKERS = 20
WRKR_LOSS = 'mean_squared_error'
WRKR_MET = ['accuracy']
WRKR_EPOCHS = 100
WRKR_BATCH_SIZE = 1
WRKR_ACTIVATION = 'sigmoid'
WRKR_LEARNING_RATE = .7
WRKR_MOMENTUM = .1
WRKR_LYR_1 = 4
WRKR_LYR_2 = 8
WRKR_LYR_3 = self.NUM_OUTPUTS
WRKR_OPT = optimizers.SGD(lr=self.WRKR_LEARNING_RATE, decay=0, momentum=self.WRKR_MOMENTUM, nesterov=False)
#set lvq variables
LVQ_LEARNING_RATE = .3
LVQ_PREDICTED_NUM_CATAGORIES = 5
LVQ_ACTUAL_NUM_CATAGORIES = -1
#set nn master variables
MSTR_LOSS = 'mean_squared_error'
MSTR_MET = ['accuracy']
MSTR_EPOCHS = 100
MSTR_BATCH_SIZE = 1
MSTR_ACTIVATION = 'sigmoid'
MSTR_LEARNING_RATE = .7 #not currently used
MSTR_MOMENTUM = .1 #not currently used
MSTR_LYR_1 = 4
MSTR_LYR_2 = 8
MSTR_LYR_3 = self.LVQ_PREDICTED_NUM_CATAGORIES
MSTR_OPT = optimizers.SGD(lr=self.MSTR_LEARNING_RATE, decay=0, momentum=self.MSTR_MOMENTUM, nesterov=False)
#set nn variables
NN_LOSS = 'mean_squared_error'
NN_MET = ['accuracy']
NN_EPOCHS = 100
NN_BATCH_SIZE = 1
NN_ACTIVATION = 'sigmoid'
NN_LEARNING_RATE = .7
NN_MOMENTUM = .1
NN_LYR_1 = 4
NN_LYR_2 = 8
NN_LYR_3 = self.NUM_OUTPUTS
NN_OPT = optimizers.SGD(lr=self.LEARNING_RATE, decay=0, momentum=self.MOMENTUM, nesterov=False)