forked from KhronosGroup/SPIRV-Cross
-
Notifications
You must be signed in to change notification settings - Fork 36
/
spirv_cross_containers.hpp
755 lines (652 loc) · 17.6 KB
/
spirv_cross_containers.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
/*
* Copyright 2019-2021 Hans-Kristian Arntzen
* SPDX-License-Identifier: Apache-2.0 OR MIT
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* At your option, you may choose to accept this material under either:
* 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
* 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
*/
#ifndef SPIRV_CROSS_CONTAINERS_HPP
#define SPIRV_CROSS_CONTAINERS_HPP
#include "spirv_cross_error_handling.hpp"
#include <algorithm>
#include <exception>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <stack>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#ifdef SPIRV_CROSS_NAMESPACE_OVERRIDE
#define SPIRV_CROSS_NAMESPACE SPIRV_CROSS_NAMESPACE_OVERRIDE
#else
#define SPIRV_CROSS_NAMESPACE spirv_cross
#endif
namespace SPIRV_CROSS_NAMESPACE
{
#ifndef SPIRV_CROSS_FORCE_STL_TYPES
// std::aligned_storage does not support size == 0, so roll our own.
template <typename T, size_t N>
class AlignedBuffer
{
public:
T *data()
{
#if defined(_MSC_VER) && _MSC_VER < 1900
// MSVC 2013 workarounds, sigh ...
// Only use this workaround on MSVC 2013 due to some confusion around default initialized unions.
// Spec seems to suggest the memory will be zero-initialized, which is *not* what we want.
return reinterpret_cast<T *>(u.aligned_char);
#else
return reinterpret_cast<T *>(aligned_char);
#endif
}
private:
#if defined(_MSC_VER) && _MSC_VER < 1900
// MSVC 2013 workarounds, sigh ...
union
{
char aligned_char[sizeof(T) * N];
double dummy_aligner;
} u;
#else
alignas(T) char aligned_char[sizeof(T) * N];
#endif
};
template <typename T>
class AlignedBuffer<T, 0>
{
public:
T *data()
{
return nullptr;
}
};
// An immutable version of SmallVector which erases type information about storage.
template <typename T>
class VectorView
{
public:
T &operator[](size_t i) SPIRV_CROSS_NOEXCEPT
{
return ptr[i];
}
const T &operator[](size_t i) const SPIRV_CROSS_NOEXCEPT
{
return ptr[i];
}
bool empty() const SPIRV_CROSS_NOEXCEPT
{
return buffer_size == 0;
}
size_t size() const SPIRV_CROSS_NOEXCEPT
{
return buffer_size;
}
T *data() SPIRV_CROSS_NOEXCEPT
{
return ptr;
}
const T *data() const SPIRV_CROSS_NOEXCEPT
{
return ptr;
}
T *begin() SPIRV_CROSS_NOEXCEPT
{
return ptr;
}
T *end() SPIRV_CROSS_NOEXCEPT
{
return ptr + buffer_size;
}
const T *begin() const SPIRV_CROSS_NOEXCEPT
{
return ptr;
}
const T *end() const SPIRV_CROSS_NOEXCEPT
{
return ptr + buffer_size;
}
T &front() SPIRV_CROSS_NOEXCEPT
{
return ptr[0];
}
const T &front() const SPIRV_CROSS_NOEXCEPT
{
return ptr[0];
}
T &back() SPIRV_CROSS_NOEXCEPT
{
return ptr[buffer_size - 1];
}
const T &back() const SPIRV_CROSS_NOEXCEPT
{
return ptr[buffer_size - 1];
}
// Makes it easier to consume SmallVector.
#if defined(_MSC_VER) && _MSC_VER < 1900
explicit operator std::vector<T>() const
{
// Another MSVC 2013 workaround. It does not understand lvalue/rvalue qualified operations.
return std::vector<T>(ptr, ptr + buffer_size);
}
#else
// Makes it easier to consume SmallVector.
explicit operator std::vector<T>() const &
{
return std::vector<T>(ptr, ptr + buffer_size);
}
// If we are converting as an r-value, we can pilfer our elements.
explicit operator std::vector<T>() &&
{
return std::vector<T>(std::make_move_iterator(ptr), std::make_move_iterator(ptr + buffer_size));
}
#endif
// Avoid sliced copies. Base class should only be read as a reference.
VectorView(const VectorView &) = delete;
void operator=(const VectorView &) = delete;
protected:
VectorView() = default;
T *ptr = nullptr;
size_t buffer_size = 0;
};
// Simple vector which supports up to N elements inline, without malloc/free.
// We use a lot of throwaway vectors all over the place which triggers allocations.
// This class only implements the subset of std::vector we need in SPIRV-Cross.
// It is *NOT* a drop-in replacement in general projects.
template <typename T, size_t N = 8>
class SmallVector : public VectorView<T>
{
public:
SmallVector() SPIRV_CROSS_NOEXCEPT
{
this->ptr = stack_storage.data();
buffer_capacity = N;
}
template <typename U>
SmallVector(const U *arg_list_begin, const U *arg_list_end) SPIRV_CROSS_NOEXCEPT : SmallVector()
{
auto count = size_t(arg_list_end - arg_list_begin);
reserve(count);
for (size_t i = 0; i < count; i++, arg_list_begin++)
new (&this->ptr[i]) T(*arg_list_begin);
this->buffer_size = count;
}
template <typename U>
SmallVector(std::initializer_list<U> init) SPIRV_CROSS_NOEXCEPT : SmallVector(init.begin(), init.end())
{
}
template <typename U, size_t M>
explicit SmallVector(const U (&init)[M]) SPIRV_CROSS_NOEXCEPT : SmallVector(init, init + M)
{
}
SmallVector(SmallVector &&other) SPIRV_CROSS_NOEXCEPT : SmallVector()
{
*this = std::move(other);
}
SmallVector &operator=(SmallVector &&other) SPIRV_CROSS_NOEXCEPT
{
clear();
if (other.ptr != other.stack_storage.data())
{
// Pilfer allocated pointer.
if (this->ptr != stack_storage.data())
free(this->ptr);
this->ptr = other.ptr;
this->buffer_size = other.buffer_size;
buffer_capacity = other.buffer_capacity;
other.ptr = nullptr;
other.buffer_size = 0;
other.buffer_capacity = 0;
}
else
{
// Need to move the stack contents individually.
reserve(other.buffer_size);
for (size_t i = 0; i < other.buffer_size; i++)
{
new (&this->ptr[i]) T(std::move(other.ptr[i]));
other.ptr[i].~T();
}
this->buffer_size = other.buffer_size;
other.buffer_size = 0;
}
return *this;
}
SmallVector(const SmallVector &other) SPIRV_CROSS_NOEXCEPT : SmallVector()
{
*this = other;
}
SmallVector &operator=(const SmallVector &other) SPIRV_CROSS_NOEXCEPT
{
if (this == &other)
return *this;
clear();
reserve(other.buffer_size);
for (size_t i = 0; i < other.buffer_size; i++)
new (&this->ptr[i]) T(other.ptr[i]);
this->buffer_size = other.buffer_size;
return *this;
}
explicit SmallVector(size_t count) SPIRV_CROSS_NOEXCEPT : SmallVector()
{
resize(count);
}
~SmallVector()
{
clear();
if (this->ptr != stack_storage.data())
free(this->ptr);
}
void clear() SPIRV_CROSS_NOEXCEPT
{
for (size_t i = 0; i < this->buffer_size; i++)
this->ptr[i].~T();
this->buffer_size = 0;
}
void push_back(const T &t) SPIRV_CROSS_NOEXCEPT
{
reserve(this->buffer_size + 1);
new (&this->ptr[this->buffer_size]) T(t);
this->buffer_size++;
}
void push_back(T &&t) SPIRV_CROSS_NOEXCEPT
{
reserve(this->buffer_size + 1);
new (&this->ptr[this->buffer_size]) T(std::move(t));
this->buffer_size++;
}
void pop_back() SPIRV_CROSS_NOEXCEPT
{
// Work around false positive warning on GCC 8.3.
// Calling pop_back on empty vector is undefined.
if (!this->empty())
resize(this->buffer_size - 1);
}
template <typename... Ts>
void emplace_back(Ts &&... ts) SPIRV_CROSS_NOEXCEPT
{
reserve(this->buffer_size + 1);
new (&this->ptr[this->buffer_size]) T(std::forward<Ts>(ts)...);
this->buffer_size++;
}
void reserve(size_t count) SPIRV_CROSS_NOEXCEPT
{
if ((count > (std::numeric_limits<size_t>::max)() / sizeof(T)) ||
(count > (std::numeric_limits<size_t>::max)() / 2))
{
// Only way this should ever happen is with garbage input, terminate.
std::terminate();
}
if (count > buffer_capacity)
{
size_t target_capacity = buffer_capacity;
if (target_capacity == 0)
target_capacity = 1;
// Weird parens works around macro issues on Windows if NOMINMAX is not used.
target_capacity = (std::max)(target_capacity, N);
// Need to ensure there is a POT value of target capacity which is larger than count,
// otherwise this will overflow.
while (target_capacity < count)
target_capacity <<= 1u;
T *new_buffer =
target_capacity > N ? static_cast<T *>(malloc(target_capacity * sizeof(T))) : stack_storage.data();
// If we actually fail this malloc, we are hosed anyways, there is no reason to attempt recovery.
if (!new_buffer)
std::terminate();
// In case for some reason two allocations both come from same stack.
if (new_buffer != this->ptr)
{
// We don't deal with types which can throw in move constructor.
for (size_t i = 0; i < this->buffer_size; i++)
{
new (&new_buffer[i]) T(std::move(this->ptr[i]));
this->ptr[i].~T();
}
}
if (this->ptr != stack_storage.data())
free(this->ptr);
this->ptr = new_buffer;
buffer_capacity = target_capacity;
}
}
void insert(T *itr, const T *insert_begin, const T *insert_end) SPIRV_CROSS_NOEXCEPT
{
auto count = size_t(insert_end - insert_begin);
if (itr == this->end())
{
reserve(this->buffer_size + count);
for (size_t i = 0; i < count; i++, insert_begin++)
new (&this->ptr[this->buffer_size + i]) T(*insert_begin);
this->buffer_size += count;
}
else
{
if (this->buffer_size + count > buffer_capacity)
{
auto target_capacity = this->buffer_size + count;
if (target_capacity == 0)
target_capacity = 1;
if (target_capacity < N)
target_capacity = N;
while (target_capacity < count)
target_capacity <<= 1u;
// Need to allocate new buffer. Move everything to a new buffer.
T *new_buffer =
target_capacity > N ? static_cast<T *>(malloc(target_capacity * sizeof(T))) : stack_storage.data();
// If we actually fail this malloc, we are hosed anyways, there is no reason to attempt recovery.
if (!new_buffer)
std::terminate();
// First, move elements from source buffer to new buffer.
// We don't deal with types which can throw in move constructor.
auto *target_itr = new_buffer;
auto *original_source_itr = this->begin();
if (new_buffer != this->ptr)
{
while (original_source_itr != itr)
{
new (target_itr) T(std::move(*original_source_itr));
original_source_itr->~T();
++original_source_itr;
++target_itr;
}
}
// Copy-construct new elements.
for (auto *source_itr = insert_begin; source_itr != insert_end; ++source_itr, ++target_itr)
new (target_itr) T(*source_itr);
// Move over the other half.
if (new_buffer != this->ptr || insert_begin != insert_end)
{
while (original_source_itr != this->end())
{
new (target_itr) T(std::move(*original_source_itr));
original_source_itr->~T();
++original_source_itr;
++target_itr;
}
}
if (this->ptr != stack_storage.data())
free(this->ptr);
this->ptr = new_buffer;
buffer_capacity = target_capacity;
}
else
{
// Move in place, need to be a bit careful about which elements are constructed and which are not.
// Move the end and construct the new elements.
auto *target_itr = this->end() + count;
auto *source_itr = this->end();
while (target_itr != this->end() && source_itr != itr)
{
--target_itr;
--source_itr;
new (target_itr) T(std::move(*source_itr));
}
// For already constructed elements we can move-assign.
std::move_backward(itr, source_itr, target_itr);
// For the inserts which go to already constructed elements, we can do a plain copy.
while (itr != this->end() && insert_begin != insert_end)
*itr++ = *insert_begin++;
// For inserts into newly allocated memory, we must copy-construct instead.
while (insert_begin != insert_end)
{
new (itr) T(*insert_begin);
++itr;
++insert_begin;
}
}
this->buffer_size += count;
}
}
void insert(T *itr, const T &value) SPIRV_CROSS_NOEXCEPT
{
insert(itr, &value, &value + 1);
}
T *erase(T *itr) SPIRV_CROSS_NOEXCEPT
{
std::move(itr + 1, this->end(), itr);
this->ptr[--this->buffer_size].~T();
return itr;
}
void erase(T *start_erase, T *end_erase) SPIRV_CROSS_NOEXCEPT
{
if (end_erase == this->end())
{
resize(size_t(start_erase - this->begin()));
}
else
{
auto new_size = this->buffer_size - (end_erase - start_erase);
std::move(end_erase, this->end(), start_erase);
resize(new_size);
}
}
void resize(size_t new_size) SPIRV_CROSS_NOEXCEPT
{
if (new_size < this->buffer_size)
{
for (size_t i = new_size; i < this->buffer_size; i++)
this->ptr[i].~T();
}
else if (new_size > this->buffer_size)
{
reserve(new_size);
for (size_t i = this->buffer_size; i < new_size; i++)
new (&this->ptr[i]) T();
}
this->buffer_size = new_size;
}
private:
size_t buffer_capacity = 0;
AlignedBuffer<T, N> stack_storage;
};
// A vector without stack storage.
// Could also be a typedef-ed to std::vector,
// but might as well use the one we have.
template <typename T>
using Vector = SmallVector<T, 0>;
#else // SPIRV_CROSS_FORCE_STL_TYPES
template <typename T, size_t N = 8>
using SmallVector = std::vector<T>;
template <typename T>
using Vector = std::vector<T>;
template <typename T>
using VectorView = std::vector<T>;
#endif // SPIRV_CROSS_FORCE_STL_TYPES
// An object pool which we use for allocating IVariant-derived objects.
// We know we are going to allocate a bunch of objects of each type,
// so amortize the mallocs.
class ObjectPoolBase
{
public:
virtual ~ObjectPoolBase() = default;
virtual void deallocate_opaque(void *ptr) = 0;
};
template <typename T>
class ObjectPool : public ObjectPoolBase
{
public:
explicit ObjectPool(unsigned start_object_count_ = 16)
: start_object_count(start_object_count_)
{
}
template <typename... P>
T *allocate(P &&... p)
{
if (vacants.empty())
{
unsigned num_objects = start_object_count << memory.size();
T *ptr = static_cast<T *>(malloc(num_objects * sizeof(T)));
if (!ptr)
return nullptr;
for (unsigned i = 0; i < num_objects; i++)
vacants.push_back(&ptr[i]);
memory.emplace_back(ptr);
}
T *ptr = vacants.back();
vacants.pop_back();
new (ptr) T(std::forward<P>(p)...);
return ptr;
}
void deallocate(T *ptr)
{
ptr->~T();
vacants.push_back(ptr);
}
void deallocate_opaque(void *ptr) override
{
deallocate(static_cast<T *>(ptr));
}
void clear()
{
vacants.clear();
memory.clear();
}
protected:
Vector<T *> vacants;
struct MallocDeleter
{
void operator()(T *ptr)
{
::free(ptr);
}
};
SmallVector<std::unique_ptr<T, MallocDeleter>> memory;
unsigned start_object_count;
};
template <size_t StackSize = 4096, size_t BlockSize = 4096>
class StringStream
{
public:
StringStream()
{
reset();
}
~StringStream()
{
reset();
}
// Disable copies and moves. Makes it easier to implement, and we don't need it.
StringStream(const StringStream &) = delete;
void operator=(const StringStream &) = delete;
template <typename T, typename std::enable_if<!std::is_floating_point<T>::value, int>::type = 0>
StringStream &operator<<(const T &t)
{
auto s = std::to_string(t);
append(s.data(), s.size());
return *this;
}
// Only overload this to make float/double conversions ambiguous.
StringStream &operator<<(uint32_t v)
{
auto s = std::to_string(v);
append(s.data(), s.size());
return *this;
}
StringStream &operator<<(char c)
{
append(&c, 1);
return *this;
}
StringStream &operator<<(const std::string &s)
{
append(s.data(), s.size());
return *this;
}
StringStream &operator<<(const char *s)
{
append(s, strlen(s));
return *this;
}
template <size_t N>
StringStream &operator<<(const char (&s)[N])
{
append(s, strlen(s));
return *this;
}
std::string str() const
{
std::string ret;
size_t target_size = 0;
for (auto &saved : saved_buffers)
target_size += saved.offset;
target_size += current_buffer.offset;
ret.reserve(target_size);
for (auto &saved : saved_buffers)
ret.insert(ret.end(), saved.buffer, saved.buffer + saved.offset);
ret.insert(ret.end(), current_buffer.buffer, current_buffer.buffer + current_buffer.offset);
return ret;
}
void reset()
{
for (auto &saved : saved_buffers)
if (saved.buffer != stack_buffer)
free(saved.buffer);
if (current_buffer.buffer != stack_buffer)
free(current_buffer.buffer);
saved_buffers.clear();
current_buffer.buffer = stack_buffer;
current_buffer.offset = 0;
current_buffer.size = sizeof(stack_buffer);
}
private:
struct Buffer
{
char *buffer = nullptr;
size_t offset = 0;
size_t size = 0;
};
Buffer current_buffer;
char stack_buffer[StackSize];
SmallVector<Buffer> saved_buffers;
void append(const char *s, size_t len)
{
size_t avail = current_buffer.size - current_buffer.offset;
if (avail < len)
{
if (avail > 0)
{
memcpy(current_buffer.buffer + current_buffer.offset, s, avail);
s += avail;
len -= avail;
current_buffer.offset += avail;
}
saved_buffers.push_back(current_buffer);
size_t target_size = len > BlockSize ? len : BlockSize;
current_buffer.buffer = static_cast<char *>(malloc(target_size));
if (!current_buffer.buffer)
SPIRV_CROSS_THROW("Out of memory.");
memcpy(current_buffer.buffer, s, len);
current_buffer.offset = len;
current_buffer.size = target_size;
}
else
{
memcpy(current_buffer.buffer + current_buffer.offset, s, len);
current_buffer.offset += len;
}
}
};
} // namespace SPIRV_CROSS_NAMESPACE
#endif